Hematology and plasma biochemistries in the Blanding’s turtle (Emydoidea blandingii) in Lake County, Illinois
Autoři:
Lauren E. Mumm aff001; John M. Winter aff001; Kirsten E. Andersson aff001; Gary A. Glowacki aff002; Laura A. Adamovicz aff001; Matthew C. Allender aff001
Působiště autorů:
Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States of America
aff001; Lake County Forest Preserves, Libertyville, IL, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225130
Souhrn
Chelonians are one of the most imperiled vertebrate taxa on the planet due to changes in the environment, anthropogenic influences, and disease. Over the last two decades, conservation strategies including nest protection, head-starting and meso-predator control have been successfully adopted by the Lake County Forest Preserve District for a population of state-endangered Blanding’s turtles (Emydoidea blandingii) in Illinois. Only recently have efforts expanded to assess the effects of management action on turtle health. The objectives of this study were to 1) establish reference intervals for 16 hematologic and plasma biochemical analytes in free-ranging Blanding’s turtles, 2) characterize demographic and temporal drivers of clinical pathology values including age class, sex, month, and year, and 3) describe bloodwork differences between a managed (SBCP) and unmanaged (IBSP) study site. Hematology and plasma biochemistries were performed for 393 turtles from 2017–18 at two sites in the Lake Plain region. Subject or population-based reference intervals were established based on the index of individuality per American Society for Veterinary Clinical Pathology guidelines. Analytes differed by age class [packed cell volume (PCV), total solids (TS), total white blood cell counts (WBC), heterophils, lymphocytes, heterophil:lymphocyte ratio (H:L), total calcium (Ca), calcium:phosphorous (Ca:P), bile acids (BA), aspartate aminotransferase (AST)], sex [H:L, Ca, phosphorus (P), Ca:P, creatine kinase (CK)], month [eosinophils, H:L, Ca, P, uric acid (UA), AST], and year [PCV, WBC, lymphocytes, basophils, H:L, Ca, P, UA]. Several analytes also varied by site [PCV, TS, monocytes, eosinophils, P, UA, AST], suggesting that health status may be affected by habitat management or lack thereof. The results of this study provide a baseline for ongoing health assessments in this region as well as across the Blanding’s turtle range.
Klíčová slova:
Blood plasma – Hematology – White blood cells – Turtles – Lymphocytes – Eosinophils – Lakes – Clinical pathology
Zdroje
1. Ernst CH, Lovich JE. Emydoidea blandingii, Blanding’s Turtle. In: Turtles of the United States and Canada. 2nd ed. Baltimore, MD: The John Hopkins University Press; 2009. p. 233–249.
2. Böhm M, Collen B, Baillie JEM, Bowles P, Chanson J, Cox N, et al. The conservation status of the world's reptiles. Biol Conserv. 2013;157:372–385.
3. Congdon JD, Keinath DA. Blanding’s turtle (Emydoidea blandingii): a technical conservation assessment. USDA Forest Service, Rocky Mountain Region; 2006. Available from: https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5182075.pdf
4. van Dijk PP, Rhodin AGJ. Emydoidea blandingii [Internet]. IUCN Red List of Threatened Species. Available from: https://www.iucnredlist.org/species/7709/121707136
5. Golet WJ, Haines TA. Snapping turtles (Chelydra serpentine) as monitors for mercury contamination of aquatic environments. Environ Monit Assess. 2001;71:211–220. doi: 10.1023/a:1011802117198 11683228
6. Allender MC, Abd-Eldaim M, Kuhns A, Kennedy M. Absence of ranavirus and herpesvirus in a survey of two aquatic turtle species in Illinois. J Herpetol Med Surg. 2009;19:16–20.
7. Benjamin T, Brasso R, Midway S, Thompson D, Harden LA. Using non-destructive techniques to measure mercury (Hg) concentrations in gravid Blanding's turtles (Emydoidea blandingii) in northeastern Illinois. Bull Environ Contam Toxicol. 2018;101:295–299. doi: 10.1007/s00128-018-2407-4 30073403
8. Grimm K, Mitchell MA, Thompson D, Maddox C. Seroprevalence of Leptospira spp. in Blanding's turtles (Emydoidea blandingii) from DuPage County, Illinois USA. J Herpetol Med Surg. 2015;25:28–32.
9. Lindemann, DM. Epidemiology of Emydoidea herpesvirus 1 in free-ranging Blanding’s turtles (Emydoidea blandingii) from Illinois. M. Sc. Thesis, University of Illinois at Urbana-Champaign. 2017. Available from: https://www.ideals.illinois.edu/bitstream/handle/2142/99249/LINDEMANN-THESIS-2017.pdf?sequence=1&isAllowed=y
10. Glowacki G, Golba C. Blanding’s Turtle Recovery Program: 2018 Summary Report. Lake County Forest Preserve District. 2018.
11. Smith WE. Lake County Forest Preserve District Mesopredator Control and Monitoring Report 2017. USDA APHIS Wildlife Services. 2017.
12. Rose BM, Allender MC. Health Assessment of Wild Eastern Box Turtles (Terrapene carolina carolina) in East Tennessee. J Herpetol Med Surg. 2011;21:107–112.
13. Dickinson VM, Jarchow JL, Trueblood MH. Hematology and plasma biochemistry reference range values for free-ranging desert tortoises in Arizona. J Wildl Dis. 2002;38:143–153. doi: 10.7589/0090-3558-38.1.143 11838205
14. Eshar D, Ammersbach M, Shacham B, Katzir G, Beaufrere H. Venous blood gases, plasma biochemistry, and hematology of wild caught common chameleons (Chamaeleo chamaelon). Can J Vet Res. 2018;82:106–114. 29755190
15. Lloyd TC, Allender MC, Archer G, Phillips CA, Byrd J, Moore AR. Modeling hematologic and biochemical parameters with spatiotemporal analysis for the free-ranging eastern box turtle (Terrapene carolina carolina) in Illinois and Tennessee, a potential biosentinel. Ecohealth. 2016;13:467–479. doi: 10.1007/s10393-016-1142-8 27384647
16. Harden LA, Fernandez J, Milanovich JR, Struecker BP, Midway SR. Blood biochemical references intervals for wild ornate box turtles (Terrapene ornata) during the active season. J Wildl Dis. 2018;54:587–591. doi: 10.7589/2017-09-222 29561712
17. March DT, Vinette-Herrin K, Peters A, Ariel E, Blyde D, Hayward D, et al. Hematologic and biochemical characteristics of stranded green sea turtles. J Vet Diagn Invest. 2018;30:423–429. doi: 10.1177/1040638718757819 29436286
18. Muñoz-Pérez JP, Lewbart GA, Hirschfeld M, Alarcón-Ruales D, Denkinger J, Castañeda JG, et al. Blood gases, biochemistry and haematology of Galapagos hawksbill turtles (Eretmochelys imbircata). Conserv Physiol. 2017;5:1–9.
19. O’Connor MP, Grumbles JS, George RH, Zimmerman LC, Spotila JR. Potential hematological and biochemical indicators of stress in free-ranging desert tortoises and captive tortoises exposed to a hydric stress gradient. Herpetological Monographs. 1994;8:5–26.
20. Nagle RD, Kinney OM, Gibbons JW, Congdon JD. A simple and reliable system for marking hard-shelled turtles: The North American Code. Herpetol Rev. 2017;48:327–330.
21. Gutzke WHN, Packard GC. The influence of temperature on eggs and hatchlings of Blanding’s turtles, Emydoidea blandingii. J Herpetol. 1987;21:161–163.
22. Mosimann JE, Bider JR. Variation, sexual dimorphism, and maturity in a Quebec population of the common snapping turtle, Chelydra serpentina. Can J Zool. 1960;38:19–38.
23. Reed AH, Henry RJ, Mason WB. Influence of statistical method used on the resulting estimate of normal range. Clin Chem. 1971;17:275–284. 5552364
24. Friedrichs KR, Harr KE, Freeman KP, Szladovits B, Walton RM, Barnhart KF, et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet Clin Pathol. 2012;4:441–453.
25. Geffre A, Concordet D, Braun J, Trumel C. Reference Value Advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet Clin Pathol. 2011;1:107–112.
26. Bertelsen MF, Kjelgaard-Hansen M, Howell JR, Crawshaw GJ. Short-term biological variation of clinical chemical values in Dumeril’s monitors (Varanus dumerili). J Zoo Wildl Med. 2007;38:217–221. doi: 10.1638/1042-7260(2007)038[0217:SBVOCC]2.0.CO;2 17679504
27. Walton RM. Subject-based reference values: biological variation, individuality, and reference change values. Vet Clin Pathol. 2012;4:1–20.
28. Russo EA, McEntee L, Applegate L, Baker JS. Comparison of two methods for determination of white blood cell counts in macaws. J Am Vet Med Assoc. 1986;189:1013–1016. 3505917
29. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. Available from: https://www.R-project.org/.
30. Mazerolle, MJ. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R Package version 2.0–3. 2015. Available from: http://CRAN.R-project.org/package=AICcmodavg.
31. López J, Waters M, Routh A, Rakotonanahary TF, Woolaver L, Thomasson A, et al. Hematology and plasma chemistry of the ploughshare tortoise (Astrochelys yniphora) in a captive breeding program. J Zoo Wildl Med. 2018;48:102–115.
32. Bonnet X, El Hassani MS, Lecq S, Michel CL, El Mouden EH, Michaud B, Slimani T. Blood mixtures: impact of puncture site on blood parameters. J Comp Physiol B. 2016;186:787–800. doi: 10.1007/s00360-016-0993-1 27146147
33. Eshar D, Gancz AY, Avni-Magen A, Wagshal E, Pohlman LM, Mitchell M. Selected plasma biochemistry analytes of healthy captive sulcata (African spurred) tortoises (Centrochelys sulcata). J Zoo Wildl Med. 2016;47:993–999. doi: 10.1638/2016-0051.1 28080924
34. Stacy NI, Alleman AR, Sayler KA. Diagnostic hematology of reptiles. Clin Lab Med. 2011;31:87–108. doi: 10.1016/j.cll.2010.10.006 21295724
35. Gottdenker NL, Jacobson ER. Effect of venipuncture site on hematologic and clinical biochemical values in desert tortoise (Gopherus agassizii). Am J Vet Res. 1995;56:19–21. 7695143
36. López-Olvera JR, Montané J, Marco I, Martínez-Silvestre A, Soler J, Lavín S. Effect of venipuncture site on hematologic and serum biochemical parameters in marginated tortoise (Testudo marginata). J Wildl Dis. 2003;39:830–836. doi: 10.7589/0090-3558-39.4.830 14733278
37. Campbell TW. Clinical pathology. In: Mader DR, Divers SJ, editors. Current therapy in reptile medicine and surgery. 3rd ed. St. Louis, MO: Elsevier; 2014. p. 70–92.
38. Nardini G, Leopardi S, Bielli M. Clinical Hematology in Reptilian Species. Vet Clin North Am Exot Anim Pract. 2013;16:1–30. doi: 10.1016/j.cvex.2012.09.001 23347537
39. Sykes JM, Klaphake E. Reptile Hematology. Vet Clin Exot Anim. 2015;18:63–82.
40. McArthur S. Problem-solving approach to common diseases of terrestrial and semi-aquatic chelonians. In: McArthur S, Wilkinson R, Meyer J, editors. Medicine and Surgery of Tortoises and Turtles. Odder, Denmark: Blackwell Publishing Ltd; 2004. p. 309–377.
41. Lumeij JT, Remple JD. Plasma bile acid concentrations in response to feeding in peregrine falcons (Falco perefrinus). Avian Dis. 1992;36:1060–1062. 1485858
42. Knotek Z, Knotkova Z, Hrda A, Dorrestein GM. Plasma bile acids in reptiles. In: Griffin C, Baer CK, editors. Proceedings, Association of Reptilian & Amphibian Veterinarians: Sixteenth Annual Conference; 2009 Aug 8–15; Milwaukee, WI. Association, 2009. p. 124–127.
43. McBride M, Hernandez-Divers SJ, Koch T, Bush S, Latimer KS, Wilson H, et al. Preliminary evaluation of pre- and post-prandial 3a-Hydroxy Bile Acids in the Green Iguana, Iguana iguana. J Herpetol Med Surg. 2006;16:129–134.
44. Ramsay EC, Dotson TK. Tissue and serum enzyme activities in the yellow rat snake (Elaphe obsolete quadrivitatta). Am J Vet Res. 1995;56:423–428. 7785815
45. Stephen JD. Reptilian liver and gastrointestinal testing. In: Fudge AM, editor. Laboratory Medicine: Avian and Exotic Pets. Philadelphia, PA: WB Saunders; 2000. p. 205–209.
46. Andreani G, Carpen E, Cannavacciuolo A, Di Girolamo N, Ferlizza E, Isani G. Reference values for hematology and plasma biochemistry variables, and protein electrophoresis of healthy Hermann's tortoises (Testudo hermanni ssp.). Vet Clin Pathol. 2014;43:573–583. doi: 10.1111/vcp.12203 25285592
47. Rousselet E, Stacy NI, LaVictoire K, Higgins BM, Tocidlowski ME, Flanagan JP, et al. Hematology and plasma biochemistry analytes in five age groups of immature, captive-reared loggerhead sea turtles (Caretta caretta). J Zoo Wildl Med. 2013;44:859–874. doi: 10.1638/2012-0162R1.1 24450044
48. Aguirre AA, Balazs GH, Spraker TR, Gross TS. Adrenal and hematological responses to stress in juvenile green turtles (Chelonia mydas) with and without fibropapillomas. Physiol Zool. 1995;68:831–854.
49. Case BC, Lewbart GA, Doerr PD. The physiological and behavioural impacts of and preference for an enriched environment in the eastern box turtle (Terrapene carolina carolina). Appl Anim Behav Sci. 2005;92:353–365.
50. Yang PY, Yu PH, Wu SH, Chie CH. Seasonal hematology and plasma biochemistry references range values of the yellow-marginated box turtle (Cuora flavomarginata). J Zoo Wildl Med. 2014;45:278–286. doi: 10.1638/2013-0125R1.1 25000688
51. Zaias J, Norton T, Fickel A, Spratt J, Altman NH, Cray C. Biochemical and hematologic values for 18 clinically healthy radiated tortoises (Geochelone radiata) on St Catherines Island, Georgia. Vet Clin Pathol. 2006;35:321–325. doi: 10.1111/j.1939-165x.2006.tb00139.x 16967417
52. Rosenberg JF, Wellehan JFX, Crevasse SE, Cray C, Stacy N. Reference intervals for erythrocyte sedimentation rate, lactate, fibrinogen, hematology, and plasma protein electrophoresis in clinically healthy captive gopher tortoises (Gopherus polyphemus). J Zoo Wildl Med. 2018;49:520–527. doi: 10.1638/2017-0183.1 30212317
53. Maixner JM, Ramsay EC, Arp LH. Effects of feeding on serum uric acid in captive reptiles. The Journal of Zoo Animal Medicine. 1987;18:62–65.
54. Lumeij JT, Remple JD. Plasma urea, creatinine and uric acid concentration in relation to feeding in peregrine falcons (Falco perefrinus). Avian Pathol. 1991;20:79–83. doi: 10.1080/03079459108418743 18680001
55. Adamovicz L, Bronson E, Barett K, Deem SL. Health assessment of free-living Eastern box turtles (Terappene carolina carolina) in and around the Maryland Zoo in Baltimore 1996–2011. J Zoo Wildl Med. 2015;46:39–51. doi: 10.1638/2014-0066R.1 25831575
56. Dantzler WH. Comparative aspects of renal urate transport. Kidney Int. 1996;49:1549–1551. doi: 10.1038/ki.1996.222 8743452
57. Miller H. Urinary diseases of reptiles: pathophysiology and diagnosis. Seminars in Avian and Exotic Pet Medicine. 1998;7:93–103.
58. Chung C, Cheng C, Chin S, Lee A, Chi C. Morphologic and cytochemical characteristics of Asian yellow pond turtle (Ocadia sinensis) blood cells and their hematologic and plasma biochemical reference values. J Zoo Wildl Med. 2009;40:76–85. doi: 10.1638/2008-0023.1 19368243
59. Mitchell MA, Tully TN. Manual of Exotic Pet Practice. St Louis, MO: Saunders; 2009.
60. Congdon JD, van Loben Sels RC. Relationships of reproductive traits and body size with attainment of sexual maturity in Blanding’s turtles (Emydoidea blandingii). J Evol Biol. 1993;6:317–327.
61. Boers KL, Allender MC, Novak LJ, Palmer J, Adamovicz L, Deem SL. Assessment of Hematologic and Corticosterone Response in Free-living Eastern Box Turtles (Terrapene carolina carolina) at Capture and After Handling. Zoo Biol. Forthcoming 2019.
62. Sheldon JD, Stacy NI, Blake S, Cabrera F, Deem SI. Comparison of total leukocyte quantification methods in free-living Galapagos tortoises (Chelonoidis spp.). J Zoo Wildl Med. 2016;47:196–205. doi: 10.1638/2015-0159.1 27010280
63. Eisenhawer E, Courtney CH, Raskin RE, Jacobson E. Relationship between separation time of plasma from heparinized whole blood on plasma biochemical analytes of loggerhead sea turtles (Caretta caretta). J Zoo Wildl Med. 2008;39:208–215. doi: 10.1638/2007-0166R.1 18634211
64. Eshar D, Avni-Magen N, Kaufman E, Beaufrère H. Effects of time and storage temperature on selected biochemical analytes in plasma of red-eared sliders (Trachemys script elegans). Am J Vet Res. 2018;79:852–857. doi: 10.2460/ajvr.79.8.852 30058847
65. Cray C, Rodriguez M, Zaias J, Altman NH. Effects of storage temperature and time on clinical biochemical parameters from rat serum. J Am Assoc Lab Anim Sci. 2009;48:202–204. 19383219
66. Campbell TW. Hematology. In: Mader DR, Divers SJ, editors. Current therapy in reptile medicine and surgery. 3rd ed. St. Louis, MO: Elsevier; 2014. p. 301–318.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF