Study of the epidemiological behavior of malaria in the Darien Region, Panama. 2015–2017
Autoři:
Lorenzo Cáceres Carrera aff001; Carlos Victoria aff002; Jose L. Ramirez aff003; Carmela Jackman aff004; José E. Calzada aff005; Rolando Torres aff001
Působiště autorů:
Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
aff001; Malaria Program, Ministry of Health, Panama City, Panama
aff002; Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
aff003; Epidemiology Department of the Darién Region, Ministry of Health, Panama City, Panama
aff004; Direcction of Research and Technological Development, Gorgas Memorial Institute of Health Studies, Panama City, Panama
aff005
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224508
Souhrn
Background
Malaria is endemic in Darién and an assessment of the different factors affecting its epidemiology is crucial for the development of adequate strategies of surveillance, prevention, and disease control. The objective of this study was to determine the main characteristics of the epidemiological behavior of malaria in the Darien region.
Methods
This research was comprised of a retrospective analysis to determine the incidence and malaria distribution in the Darien region from 2015 to 2017. We evaluated malaria indicators, disease distribution, incidence (by age group and sex), diagnostic methods, treatment, and control measures. In addition, we examined the cross-border migration activity and its possible contribution to the maintenance and distribution of malaria.
Results
During the period of 2015–2017, we examined 41,141 thick blood smear samples, out of which 501 tested positive for malaria. Plasmodium vivax was responsible for 92.2% of those infections. Males comprised 62.7% of the total diagnosed cases. Meanwhile, a similar percentage, 62.7%, of the total cases were registered in economically active ages. The more frequent symptoms included fever (99.4%) and chills (97.4%), with 53.1% of cases registering between 2,000 and 6,000 parasites/μl of blood. The annual parasitic incidence (API) average was 3.0/1,000 inhabitants, while the slide positivity rate (SPR) was 1.2% and the annual blood examination rate (ABER) 22.5%. In Darién there is a constant internal and cross-border migration movement between Panama and Colombia. Malaria control measures consisted of the active and passive search of suspected cases and of the application of vector control measures.
Conclusion
This study provides an additional perspective on malaria epidemiology in Darién. Additional efforts are required to intensify malaria surveillance and to achieve an effective control, eventually moving closer to the objective of malaria elimination. At the same time, there is a need for more eco-epidemiological, entomological and migratory studies to determine how these factors contribute to the patterns of maintenance and dissemination of malaria.
Klíčová slova:
Diagnostic medicine – Parasitic diseases – Malaria – Epidemiology – Plasmodium – Malarial parasites – Economics of migration – Panama
Zdroje
1. Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, et al. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009; 6: e1000048. doi: 10.1371/journal.pmed.1000048 19323591
2. Ibor UW, Okoronkwo EM. Demographic and socioeconomic factors influencing malaria incidence in Calabar, cross river state, Nigeria. Science World Journal. 2017; 12:19–24. https://www.ajol.info/index.php/swj/article/viewFile/166068/155503. Accessed January, 2019.
3. Padilla JC, Álvarez G, Montoya R, Chaparro P; Herrera S. Epidemiology and control of malaria in Colombia. Mem Inst Oswaldo Cruz 2011; 106:114–22. doi: 10.1590/s0074-02762011000900015 21881765
4. World Health Organization. World Malaria Report. World 2017. World Health Organization. Geneva, Switzerland 2017. http://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1. Accessed 17 January 2019.
5. World Health Organization. World. Malaria Report 2018. World Health Organization Geneva, Switzerland. 2018. http://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1. Accessed January, 2019.
6. Organización Panamericana de la Salud/Organización Mundial de la Salud. Informe de la situación de la malaria en las Américas 2014. Washington, D.C. PAHO, 2017. Pag. 107.
7. Pan American Health Organization. Situación de la Malaria en la Región de las Américas, 2000–2012. Washington (USA): PAHO. 2013; pp. 5. https://www.paho.org/hq/dmdocuments/2012/2012-cha-situacion-malaria-americas.pdf. Accessed January, 2019.
8. Pan American Health Organization. Informe de la situación del Paludismo en las Américas, 2011. Washington (USA): PAHO. 2012; pp. 3. https://www.paho.org/hq/dmdocuments/2013/PAHO-Report-2011-Regional-SP.pdf. Accessed January, 2019.
9. Rodríguez CU, Rivera MJ, Rebaza H. Factores de riesgo para malaria por Plasmodium vivax en una población rural de Trujillo, Perú. Rev Peru Med Exp Salud Publica 2007; 24:35–9
10. Ramal C, Vásquez M. Intervención de control de un brote de malaria en Nuevo Pevas, Loreto. Rev Perú Epidemiol. 2008; 12:1–7.
11. Cabrera OL, Diaz SP, Pareja P & Santamaría E. Aceptabilidad y eficacia de mosquiteros tratados con insecticida de larga duración Olyset® en un área endémica para malaria en Colombia. Bol Mal Salud Amb 2009; 49:241–50.
12. Rogers DJ, Randolph SE. The global spread of malaria in a future, warmer world. Science 2000; 289:1763–66. 10976072
13. Tatem AJ, Guerra CA, Kabaria CW, Noor AM, Hay SI. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity. Malar J. 2008; 7:218. doi: 10.1186/1475-2875-7-218 18954430
14. Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI. Climate change and the global malaria recession. Nature. 2010; 465:342–5. doi: 10.1038/nature09098 20485434
15. Rodriguez-Morales AJ, Cardenas R, Sandoval C, Baptista G, Jaimes E, Mendoza JG, et al. Medio ambiente y protozoosis sistémicas. Variabilidad climática y su incidencia en la malaria. Academia. 2004; 2:26–32.
16. Craig MH, Snow RW, le Sueur D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today. 1999; 15:105–11 doi: 10.1016/s0169-4758(99)01396-4 10322323
17. Calzada JE, Marquez R, Rigg C, Victoria C, De La Cruz M, Chaves LF and Cáceres L. Characterization of a recent malaria outbreak in the autonomous indigenous region of Guna Yala, Panama. Malar J. 2015; 14:459. doi: 10.1186/s12936-015-0987-6 26578076
18. Cáceres L, Rovira J, García A, Torres R. Determinación de la resistencia a insecticidas organofosforados, carbamatos y piretroides en Anopheles albimanus (Díptera: Culicidae) de Panamá. Biomédica. 2011; 31:419–27. doi: 10.1590/S0120-41572011000300014 22674318
19. Cáceres L, Rovira J, Torres R, García A, Calzada J, De La Cruz M. Characterization of Plasmodium vivax malaria transmission at the border of Panamá and Costa Rica (in Spanish). Biomedica. 2012; 32:557–69. doi: 10.1590/S0120-41572012000400011 23715231
20. Lainhart W, Dutari LC, Rovira JR, Sucupira IM, Póvoa MM, Conn JE, et al. Epidemic and NonEpidemic Hot Spots of Malaria Transmission Occur in Indigenous Comarcas of Panama. PLoS Negl Trop Dis. 2016; 10(5):e0004718. doi: 10.1371/journal.pntd.0004718 27182773
21. Loaiza JR, Bermingham E, Scott ME, Rovira JR and Conn JE. Species composition and distribution of adult Anopheles (Diptera: Culicidae) in Panama. J Med Entomol. 2008; 45:841–51. doi: 10.1603/0022-2585(2008)45[841:scadoa]2.0.co;2 18826025
22. Loaiza J, Scott M, Bermingham E, Rovira J, Sanjur O, Conn JE. Anopheles darlingi (Diptera: Culicidae) in Panama. Am J Trop Med Hyg 2009; 81: 23–26. 19556561
23. Lopez-Beltran C, Deister VG. Scientific approaches to the Mexican mestizo. Hist Cienc Saude Manguinhos. 2013; 20:391–410. Spanish. 23903910
24. Reiter, Bernd, and Kimberly Eison Simmons, Editors. Afrodescendants, Identity, and the Struggle for Development in the Americas. Michigan State University Press, 2012. JSTOR, www.jstor.org/stable/10.14321/j.ctt7zt80g.
25. Autoridad Nacional del Ambiente. Atlas ambiental de la República de Panamá. Primera versión 2010. http://online.fliphtml5.com/eebm/ehya/index.html#p=2. Accessed may, 2018.
26. Empresa de Transmisión Eléctrica S. A. Departamento de Hidrometeorología. Estadística panameña. 2017. http://www.hidromet.com.pa/open_data.php?id=154020&t_est=M&clase_dato=2&periodicidad=3&sensor=TEMP. Accessed may, 2018.
27. Ministerio de Salud de Panamá. Manual de normas y procedimientos para la malaria. Panamá: Ministerio de Salud de Panamá; 2011. p.172. http://www.minsa.gob.pa/sites/default/files/publicaciongeneral/manualnormayprocmalaria.pdf. Accessed December, 2018
28. López FJ, Schmunis G. Diagnóstico de malaria. Publicación científica No. 512. Washington, D.C.: Organización Panamericana de la Salud; 1988. p. 196.
29. Schellenberg JR, Smith T, Alonso PL, Hayes RJ. What is clinical malaria? Finding case definitions for field research in highly endemic areas. Parasitol Today. 1994; 10:439–42. doi: 10.1016/0169-4758(94)90179-1 15275531
30. Peters DH, Gray RH. When is fever malaria? Lancet. 1992; 339:690.
31. World Health Organization. Guidelines for the treatment of malaria. Third edition. Geneva: World Health Organization; 2015. p. 303. http://apps.who.int/iris/bitstream/10665/162441/1/9789241549127_eng.pdf?ua=1&ua=1. Accessed December, 2018.
32. World Health Organization. WHO malaria terminology. Global Malaria Programme. 2016. http://apps.who.int/iris/bitstream/handle/10665/208815/WHO_HTM_GMP_2016.6_eng.pdf?sequence=1. Accessed October, 2018.
33. Centers for Disease Control and Prevention. National notifiable diseases surveillance system. https://wwwn.cdc.gov/nndss/conditions/malaria/casedefinition/2010/. Accessed 11 october 2017.
34. Contraloría General de la República. Instituto Nacional de Estadística y Censo. https://www.contraloria.gob.pa/inec/Publicaciones/Publicaciones.aspx?ID_SUBCATEGORIA=10&ID_PUBLICACION=499&ID_IDIOMA=1&ID_CATEGORIA=3. Accessed october, 2018.
35. Castillo CS. Principios epidemiológicos para el control de la malaria. Módulo No. 2. Cuantificación de la malaria como problema de salud. Washington D.C.: Organización Panamericana de la Salud; 1991.
36. Samudio F, Santamaría AM, Obaldia N III, Pascale JM, Bayard V, Calzada JE. Prevalence of Plasmodium falciparum mutations associated with antimalarial drug resistance in Kuna Yala, Panama. Am J Trop Med Hyg. 2005; 71:839–41.
37. Ministerio de Salud de Panamá. Situación de la salud en Panamá. Documento marco. Panamá: Ministerio de Salud de Panamá; 2005. pp. 174. http://www.minsa.gob.pa/sites/default/files/publicaciones/situacion_de_salud_panama_2013_0.pdf. Accessed January, 2019.
38. Hernández M, Arboleda D, Arce S, Benavides A, Tejada PA, Ramírez SV et al. Metodología para la elaboración de canales endémicos y tendencia de la notificación del dengue, Valle del Cauca, Colombia, 2009–2013. Biomédica 2016; 36[Supl.2]:98–107. http://dx.doi.org/10.7705/biomedica.v36i0.2934
39. Marie GC, Díaz ENM, Moreno LML, Villa OT, Hernández NB. Canales Endémicos y Calidad de la Información para su Elaboración en Municipios Seleccionados. Revista Cubana de Salud Pública. 2010; 36:95–106.
40. Méndez F, Carrasquilla G, Muñoz A. Risk factors associated with malaria infection in an urban setting. Trans R Soc Trop Med Hyg 2000; 94:367–71. doi: 10.1016/s0035-9203(00)90106-8 11127234
41. Ochoa J y Osorio L. Epidemiología de malaria urbana en Quibdó, Chocó. Biomédica. 2006; 26:278–85. 16925100
42. Artavanis-Tsakonas K, Tongren JE, Riley EM. The war between the malaria parasite and the immune system: Immunity, immunoregulation and immunopathology. Clin Exp Immunol. 2003; 133:145–52. doi: 10.1046/j.1365-2249.2003.02174.x 12869017
43. Marques GRAM Condino MLF, Serpa LLN Cursino TVM. Aspectos epidemiológicos de malária autóctone na mata atlântica, litoral norte, Estado de São Paulo, 1985–2006. Rev Soc Bras Med Trop. 2008; 41:386–9. doi: 10.1590/s0037-86822008000400012 18853012
44. Couto RD, Latorre MRDO, Di Santi SM, Natal D. Malária autóctone notificada no Estado de São Paulo: aspectos clínicos e epidemiológicos de 1980 a 2007. Rev Soc Bras Med Trop. 2010; 43:52–8. doi: 10.1590/s0037-86822010000100012 20305969
45. Ferreira IM, Yokoo EM, Souza-Santos R, Galvão ND, Atanaka-Santos M. Factors associated with the incidence of malaria in settlement areas in the district of Juruena, Mato Grosso state, Brazil. Cien Saude Colet. 2012; 17(9):2415–24. doi: 10.1590/s1413-81232012000900022 22996892
46. Adeola AM, Botai OJ, Olwoch JM, Rautenbach CJ, Adisa OM, Taiwo OJ, et al. Environmental factors and population at risk of malaria in Nkomazi municipality, South Africa. Trop Med Int Health. 2016; 21[5]:675–86. doi: 10.1111/tmi.12680 26914617
47. Marques AC. Human migration and the spread of malaria in Brazil. Parasitol Today 1987; 3:166–70. doi: 10.1016/0169-4758(87)90170-0 15462945
48. Castro MC, Monte-Mór L, Sawyer DO, Singer BH. Malaria risk on the Amazon frontier. Proc Natl Acad Sci USA. 2006; 103:2452–7. doi: 10.1073/pnas.0510576103 16461902
49. Camargo LMA, Ferreira MU, Krieger H, Camargo EP, Silva LHP. Unstable Hypoendemic malaria in Rondonia (Western Amazon Region, Brazil): epidemic outbreaks and work associated incidence in an agro-industrial rural settlement. Am J Trop Med Hyg. 1994; 51:16–25. doi: 10.4269/ajtmh.1994.51.16 8059911
50. Camargo LMA, dal Colletto GM, Ferreira M, Gurgel SM, Escobar AL, Marques A, et. al. Hypoendemic malaria in Rondonia (Brazil, Western Amazon Region): seasonal variation and risk groups in an urban locality. Am J Trop Med Hyg 1996; 55:32–8. doi: 10.4269/ajtmh.1996.55.32 8702019
51. Carmona-Fonseca J. La Región “Urabá Antioqueño-Cuencas altas de los ríos Sinú y San Jorge-Bajo Cauca Antioqueño”: “guarida” del paludismo colombiano. 2017; Salud 49:577–89 http://dx.doi.org/10.18273/revsal.v49n4-2017007.
52. Montoya C, Bascuñán P, Rodríguez-Zabala J, Correa MM. Abundance, composition and natural infection of Anopheles mosquitoes from two malaria-endemic regions of Colombia. Biomédica 2017; 37(Supl.2):98–105. https://doi.org/10.7705/biomedica.v34i2.3553
53. Krisher LK, Krisher J, Ambuludi M, Arichabala A, Beltrán-Ayala E, Navarrete P, et al. Successful malaria elimination in the Ecuador–Peru border region: epidemiology and lessons learned. Malar J. 2016; 15:573. doi: 10.1186/s12936-016-1630-x 27894320
54. Prothero RM. Disease and mobility: a neglected factor in epidemiology. Int J Epidemiol 1977; 6:259–67. doi: 10.1093/ije/6.3.259 591173
55. Lorenz C, Virginio F, Aguiar BS, Suesdek L, Chiaravalloti-Neto F. Spatial and temporal epidemiology of malaria in extra-Amazonian regions of Brazil. Malar J. 2015; 15;14:408. doi: 10.1186/s12936-015-0934-6 26466889
56. Nájera JA, González-Silva M, Alonso PL. Some lessons for the future from the Global Malaria Eradication Programme (1955–1969). PLoS Med. 2011; 25;8(1):e1000412. doi: 10.1371/journal.pmed.1000412 21311585
57. Pindolia DK, Garcia AJ, Huang Z, Fik T, Smith DL, Tatem AJ. Quantifying crossborder movements and migrations for guiding the strategic planning of malaria control and elimination. Malar J. 2014; 3;13:169. doi: 10.1186/1475-2875-13-169 24886389
58. Lynch CA, Bruce J, Bhasin A, Roper C, Cox J, Abeku TA. Association between recent internal travel and malaria in Ugandan highland and highland fringe areas. Trop. Med. & Int. Health. 2015; 20:773–80. doi: 10.1111/tmi.12480 Epub 2015 Mar 17. 25689689
59. Bruce-Chwatt LJ. Movements of populations in relation to communicable disease in Africa. East Afr Med J. 1968; 45:266–75. 5674005
60. World Health Organization. Global technical strategy for malaria 2016–2030. 2015. http://apps.who.int/iris/bitstream/handle/10665/176712/9789241564991_eng.pdf?sequence=1. Accessed 17 January 2019.
61. Whittaker M, Smith C. Findings of the literature review on mobility, infectious diseases and malaria. Malaria Journal 2012 11(Suppl 1):P101.
62. Takala-Harrison S & Laufer MK. Antimalarial drug resistance in Africa: key lessons for the future. Ann N Y Acad Sci. 2015; 1342: 62–7. doi: 10.1111/nyas.12766 25891142
63. Blair-Trujillo S, Lacharme-Lora L, Carmona-Fonseca J. Bill & Melinda Gates Foundation Malaria Forum. Day-2 transcript. 17-10- 2007. http://www.gatesfoundation.org/speeches-?commentary/Pages/melindafrench-gates-20?07-malaria-forum.aspx. Accessed 22 may 2018.
64. SIVIGILA. Boletín Epidemiológico Semanal. Semana epidemiológica número 52 de 2016. 2016. http://www.ins.gov.co/boletinepidemiologico/BoletnEpidemiolgico/2016Boletínepidemiológicosemana52. Accessed 29 December 2017.
65. Ault S. Effect of demographic patterns, social structure, and human behaviour on malaria. In: Demography and vector-borne diseases (Ed. M Service CRC Press, Florida. 1989. pp. 283–302.
66. Sevilla-Casas E. Human mobility and malaria risk in the Naya river basin of Colombia. Social Science and Medicine 1993; 37, 1155–67. doi: 10.1016/0277-9536(93)90255-3 8235755
67. Hurtado LA, Cáceres L, Chaves LF, Calzada JE. When climate change couples social neglect: malaria dynamics in Panamá. Emerg Microbes Infect. 2014; 3[4]:e27. doi: 10.1038/emi.2014.27 26038518
68. Hurtado LA, Calzada JE, Rigg CA, Castillo M, Chaves LF. Climatic fluctuations and malaria transmission dynamics, prior to elimination, in Guna Yala, República de Panamá. Malar J. 2018; 20;17[1]:85. doi: 10.1186/s12936-018-2235-3 29463259
69. Benavides-Melo JA. El cambio climático como determinante de la distribución de la malaria. Curare. 2015; 2:33–45. doi: 10.16925/cu.v2i2.1185
70. Paaijmans KP, Cator LJ, and Thomas MB. Temperature dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity. PLoS ONE. 2013; 8:e55777. doi: 10.1371/journal.pone.0055777 23383280
71. Tanser C, Sharp B, and Le Sueur D. Potential effect of climate change on malaria transmission in Africa. The Lancet. 2003; 362:1792–8.
72. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes caused by deforestation the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am J Trop Med Hyg. 2006; 74:772–8. 16687679
73. Le PVV, Kumar P, Ruiz MO, Mbogo C, Muturi EJ. Predicting the direct and indirect impacts of climate change on malaria in coastal Kenya. PLoS One. 2019; 6;14[2]:e0211258. doi: 10.1371/journal.pone.0211258 30726279
74. Onyango EA, Sahin O, Awiti A, Chu C, Mackey B. An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa. Malar J. 2016; 15:551. doi: 10.1186/s12936-016-1600-3 27835976
75. World Health Organization. Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg. 2000; 94(Suppl 1):S1–S90.
76. Artavanis-Tsakonas K, Tongren JE, Riley EM. The war between the malaria parasite and the immune system: Immunity, immunoregulation and immunopathology. Clin Exp Immunol. 2003; 133:145–52. doi: 10.1046/j.1365-2249.2003.02174.x 12869017
77. World Health Organization. Management of severe malaria. A practical handbook. Third Edition. Geneva: WHO; 2012. http://apps.who.int/iris/bitstream/10665/79317/1/9789241548526_eng.pdf?ua=1. Accessed February, 2018.
78. Olliaro PL, Trigg PI. Status of antimalarial drugs under development. Bull World Health Organ. 1995; 73:565–71. 8846482
79. Warrell DA. Clinical features of malaria. In: Warrell DA, Gilles HM, eds. Essential malariology. 4th ed. London: Arnold; 2002. p. 191–205.
80. Santa-Olalla Peralta P, Vázquez-Torres MC, Latorre-Fandos E, Mairal-Claver P, Sattabongkot J, Tsuboi T et al. Plasmodium vivax transmission: chances for control?. Trends Parasitol. 2004; 20:192–98. doi: 10.1016/j.pt.2004.02.001 15099559
81. Naing C, Whittaker MA, Nyunt-Wai V, Mak JW. Is Plasmodium vivax malaria a severe malaria? a systematic review and meta-analysis. PLoS Negl Trop Dis. 2014; 4;8[8]:e3071. doi: 10.1371/journal.pntd.0003071 25121491
82. Staalsoe T, Hviid L. The role of variant-specific immunity in asymptomatic malaria infections: maintaining a fine balance. Parasitol Today. 1998; 14:177–8. doi: 10.1016/s0169-4758(98)01228-9 17040744
83. World Health Organization. Division of Control of Tropical Diseases. Assessment of therapeutic efficacy of antimalarial drugs: for uncomplicated falciparum malaria in areas with intense transmission. Geneva: World Health Organization 1996. http://www.who.int/iris/handle/10665/63295. Accessed: 20 may 2017.
84. Shute GT, Sodeman TM. Identification of malaria parasites by fluorescence microscopy and acridine orange staining. Bull World Health Organ 1973; 48: 591–96. 4130021
85. World Health Organization. World. Malaria Report 2009. 2010. World Health Organization. Geneva, Switzerland. 66 pp. https://apps.who.int/iris/bitstream/handle/10665/44234/9789241563901_eng.pdf;jsessionid=8EF27472712434C7EDE4996C40931C32?sequence=1. Accessed may, 2018.
86. D’Acremont V, Lengeler C, Genton B. Stop ambiguous messages on malaria diagnosis. BMJ 2007; 334:403. doi: 10.1136/bmj.39073.496829.AE
87. Lin JT, Saunders DL, Meshnick SR. The role of submicroscopic parasitemia in malaria transmission: what is the evidence? Trends Parasitol. 2014; 30:183–90. doi: 10.1016/j.pt.2014.02.004 24642035
88. Slater HC, Ross A, Ouédraogo AL, White LJ, Nguon C, Walker PG, et al. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature 2015; 528:S94–S101. doi: 10.1038/nature16040 26633771
89. Mendis K, Sina BJ, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg. 2001; 64:97–106 doi: 10.4269/ajtmh.2001.64.97 11425182
90. McKenzie FE, Jeffery GM, Collins WE. Plasmodium vivax blood-stage dynamics. J. Parasitol. 2002; 88:521–35. doi: 10.1645/0022-3395(2002)088[0521:PVBSD]2.0.CO;2 12099421
91. Awab GR, Pukrittayakamee S, Imwong M, Dondorp AM, Woodrow CJ, Lee SJ, et al. Dihydroartemisinin-piperaquine versus chloroquine to treat vivax malaria in Afghanistan: an open randomized, non-inferiority, trial. Malar J. 2010; 9:105. doi: 10.1186/1475-2875-9-105 20409302
92. Douglas NM, Anstey NM, Angus BJ, Nosten F, Price RN. Artemisinin combination therapy for vivax malaria. Lancet Infect. Dis. 2010, 10: 405–16. doi: 10.1016/S1473-3099(10)70079-7 20510281
93. Collins WE, Sullivan JS, Nace D, Williams T, Sullivan JJ, Galland GG, et al. Experimental infection of Anopheles farauti with different species of Plasmodium. J. Parasitol. 2002; 88:295–8. doi: 10.1645/0022-3395(2002)088[0295:EIOAFW]2.0.CO;2 12054000
94. Sattabongkot J, Tsuboi T, Zollner GE, Sirichaisinthop J, Cui L. Plasmodium vivax transmission: chances for control? Trends Parasitol 2004; 20:192–98. doi: 10.1016/j.pt.2004.02.001 15099559
95. Collins WE & Jefery GM. A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium falciparum in patients previously infected with heterologous species of Plasmodium: efect on development of parasitologic and clinical immunity. Am. J. Trop. Med. Hyg. 1999; 61:3643.
96. Pombo DJ, Lawrence G, Hirunpetcharat C, Rzepczyk C, Bryden M, Cloonan N, et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet. 2002; 24;360(9333):610–7 doi: 10.1016/S0140-6736(02)09784-2 12241933
97. Bruce-Chwatt LJ. Essential Malariology. William Heinemann Medical Books, Londres; 1980.
98. Campuzano Zuluaga G, Blair Trujillo S. Malaria: consideraciones sobre su diagnóstico. Medicina & Laboratorio 2010; 16:311–54.
99. Baird KJ, Maguire JD, Price RN. Diagnosis and treatment of Plasmodium vivax malaria. Adv Parasitol. 2012; 80:203–70. doi: 10.1016/B978-0-12-397900-1.00004-9 23199489
100. Baird JK, Valecha N, Duparc S, White NJ, Price RN. Diagnosis and Treatment of Plasmodium vivax Malaria. Am J Trop Med Hyg. 2016; 28;95(6 Suppl):35–51. doi: 10.4269/ajtmh.16-0171 27708191
101. Ministerio de Salud de Panamá. Informe Técnico de la situación de la malaria en Panamá. Departamento de Control de Vectores, Programa Nacional de malaria. Pag. 37.
102. Galappaththy GN, Tharyan P, Kirubakaran R. Primaquine for preventing relapse in people with Plasmodium vivax malaria treated with chloroquine. Cochrane Database Syst Rev 2013; 10:CD004389. doi: 10.1002/14651858
103. World Health Organization. Methods for surveillance of antimalarial drug efficacy. World Health Organization, Geneva, Switzerland Switzerland. 2009. http://apps.who.int/iris/bitstream/10665/44048/1/9789241597531_eng.pdf. Accessed may, 2018.
104. White NJ, Imwong M. Relapse. Adv Parasitol 2012; 80:113–50. doi: 10.1016/B978-0-12-397900-1.00002-5 23199487
105. Nash D, Nair S, Mayxay M, Newton PN, Guthmann JP, Nosten F, et al. Selection strength and hitchhiking around two anti-malarial resistance genes. Proc Biol Sci. 2005; 7;272(1568):1153–61. doi: 10.1098/rspb.2004.3026 16024377
106. Escalante AA, Ferreira MU, Vinetz JM, Volkman SK, Cui L, Gamboa D, et al. Malaria molecular epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. Am J Trop Med Hyg. 2015; 93:79–86. doi: 10.4269/ajtmh.15-0005 26259945
107. Zuluaga-Idárraga L, Blair S, Akinyi Okoth S, Udhayakumar V, Marcet PL, Escalante AA, et al. Prospective Study of Plasmodium vivax Malaria Recurrence after Radical Treatment with a Chloroquine-Primaquine Standard Regimen in Turbo, Colombia. Antimicrob Agents Chemother. 2016; 22;60:4610–9. doi: 10.1128/AAC.00186-16 27185794
108. Dondorp AM, Nosten Fo, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009; 361(5):455–67. doi: 10.1056/NEJMoa0808859 19641202
109. Kelly-Hope L, Ranson H, Hemingway J. Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infect Dis. 2008; 8(6):387–9. doi: 10.1016/S1473-3099(08)70045-8 18374633
110. Pan American Health Organization, “Washington D.C.: Plan de acción para la eliminación de la malaria 2016–2020”. 2016. http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=35669&Itemid=270&lang=es. Accessed January, 2019.
111. World Health Organization. World Malaria Report 2016. CC BY-NC-SA 3.0 IGO http://apps.who.int/iris/bitstream/10665/252038/1/9789241511711-eng.pdf?ua=1. Accessed 2 December 2018.
112. World Health Organization, Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes, Geneva, switzerland, 2nd edition, 2016.
113. Venter N, Oliver SV, Muleba M, Davies C, Hunt RH, Koekemoer LL, et al. Benchmarking insecticide resistance intensity bioassays for Anopheles malaria vector speciesagainst resistance phenotypes of known epidemiological significance. Parasit Vectors. 2017; 20;10(1):198. doi: 10.1186/s13071-017-2134-4 28427447
114. Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013, 12: 56– doi: 10.1186/1475-2875-12-56 23388506
115. Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011, 10: 80– doi: 10.1186/1475-2875-10-80 21477321
116. Killeen GF, Chitnis N. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malar J. 2014, 13: 97– doi: 10.1186/1475-2875-13-97 24629066
117. World Health Organization. Global Malaria Programme. World Malaria Report 2013. World Health Organization, Geneva, 2013. http://www.who.int/malaria/publications/world_malaria_report_2013/report/en/. Accessed January, 2019.
118. Kleinschmidt I, Schwabe C, Benavente L, Torrez M, Ridl FC, Segura JL, et al. Marked increase in child survival after four years of intensive malaria control. Am J Top Med Hyg. 2009; 80(6):882–8.
119. de Santana Filho FS, de Lima Arcanjo AR, Chehuan YM, Costa MR, Martinez-Espinosa FE, Vieira JL, et al. Chloroquine-resistant Plasmodium vivax, Brazilian Amazon. Emerg Infect Dis. 2007; 13:1125–6. doi: 10.3201/eid1307.061386 18214203
120. Marques MM, Costa MR, Santana Filho FS, Vieira JL, Nascimento MT, Brasil LW, et al. Plasmodium vivax chloroquine resistance and anemia in the western Brazilian Amazon. Antimicrob Agents Chemother. 2014; 58:342–7. doi: 10.1128/AAC.02279-12 24165179
121. Pan American Health Organization. 525 Twenty-third Street, N.W., Washington, D.C. 20037, United States of America. Resistance to Antimalarials. https://www.paho.org/hq/index.php?option=com_content&view=article&id=2405:resistance-antimalarials&Itemid=1912&lang=en. Accessed July, 2019.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF