Interleukin-38 interacts with destrin/actin-depolymerizing factor in human keratinocytes
Autoři:
Dominique Talabot-Ayer aff001; Loïc Mermoud aff001; Julia Borowczyk aff001; Justyna Drukala aff004; Michal Wolnicki aff005; Ali Modarressi aff006; Wolf-Henning Boehncke aff001; Nicolo Brembilla aff001; Gaby Palmer aff001
Působiště autorů:
Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
aff001; Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
aff002; Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
aff003; Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
aff004; Department of Pediatric Urology, Jagiellonian University Medical College, Cracow, Poland
aff005; Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospitals of Geneva, University of Geneva School of Medicine, Geneva, Switzerland
aff006
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225782
Souhrn
Interleukin (IL)-38 is a member of the IL-1 family of cytokines, which was proposed to exert anti-inflammatory effects. IL-38 is constitutively expressed in the skin, where keratinocytes are the main producing cells. Little information is currently available concerning IL-38 biology. Here, we investigated the subcellular localization and interaction partners of the IL-38 protein in human keratinocytes. IL-38 expression was reduced in primary keratinocytes grown in monolayer (2D) cultures. We thus used IL-38 overexpressing immortalized normal human keratinocytes (NHK/38) to study this cytokine in cell monolayers. In parallel, differentiation of primary human keratinocytes in an in vitro reconstructed human epidermis (RHE) 3D model allowed us to restore endogenous IL-38 expression. In NHK/38 cells and in RHE, IL-38 was mainly cell-associated, rather than released into culture supernatants. Intracellular IL-38 was preferentially, although not exclusively, cytoplasmic. Similarly, in normal human skin sections, IL-38 was predominantly cytoplasmic in the epidermis and essentially excluded from keratinocyte nuclei. A yeast two-hybrid screen identified destrin/actin-depolymerizing factor (DSTN) as a potential IL-38-interacting molecule. Co-immunoprecipitation and proximity ligation assay confirmed this interaction. We further observed partial co-localization of IL-38 and DSTN in NHK/38 cells. Endogenous IL-38 and DSTN were also co-expressed in all epidermal layers in RHE and in normal human skin. Finally, IL-38 partially co-localized with F-actin in NHK/38 cells, in particular along the cortical actin network and in filopodia. In conclusion, IL-38 is found predominantly in the cytoplasm of human keratinocytes, where it interacts with DSTN. The functional relevance of this interaction remains to be investigated.
Klíčová slova:
Cell differentiation – Skin – Epidermis – Cytokines – Cell staining – Immunoprecipitation – DAPI staining – Keratinocytes
Zdroje
1. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003–18. Epub 2013/12/18. doi: 10.1016/j.immuni.2013.11.010 24332029; PubMed Central PMCID: PMC3933951.
2. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. The interleukin (IL)-1 cytokine family—Balance between agonists and antagonists in inflammatory diseases. Cytokine. 2015;76(1):25–37. Epub 2015/07/18. doi: 10.1016/j.cyto.2015.06.017 26185894.
3. Boraschi D, Italiani P, Weil S, Martin MU. The family of the interleukin-1 receptors. Immunological reviews. 2018;281(1):197–232. Epub 2017/12/17. doi: 10.1111/imr.12606 29248002.
4. Lin H, Ho AS, Haley-Vicente D, Zhang J, Bernal-Fussell J, Pace AM, et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. The Journal of biological chemistry. 2001;276(23):20597–602. Epub 2001/03/30. doi: 10.1074/jbc.M010095200 11278614.
5. van de Veerdonk FL, Stoeckman AK, Wu G, Boeckermann AN, Azam T, Netea MG, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(8):3001–5. Epub 2012/02/09. doi: 10.1073/pnas.1121534109 22315422; PubMed Central PMCID: PMC3286950.
6. Rudloff I, Godsell J, Nold-Petry CA, Harris J, Hoi A, Morand EF, et al. Brief Report: Interleukin-38 Exerts Antiinflammatory Functions and Is Associated With Disease Activity in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2015;67(12):3219–25. Epub 2015/09/01. doi: 10.1002/art.39328 26314375.
7. Boutet MA, Najm A, Bart G, Brion R, Touchais S, Trichet V, et al. IL-38 overexpression induces anti-inflammatory effects in mice arthritis models and in human macrophages in vitro. Annals of the rheumatic diseases. 2017. Epub 2017/03/16. doi: 10.1136/annrheumdis-2016-210630 28288964.
8. Mora J, Schlemmer A, Wittig I, Richter F, Putyrski M, Frank AC, et al. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J Mol Cell Biol. 2016. Epub 2016/02/20. doi: 10.1093/jmcb/mjw006 26892022.
9. Mercurio L, Morelli M, Scarponi C, Eisenmesser EZ, Doti N, Pagnanelli G, et al. IL-38 has an anti-inflammatory action in psoriasis and its expression correlates with disease severity and therapeutic response to anti-IL-17A treatment. Cell death & disease. 2018;9(11):1104. Epub 2018/11/01. doi: 10.1038/s41419-018-1143-3 30377293; PubMed Central PMCID: PMC6207563.
10. Yuan X, Li Y, Pan X, Peng X, Song G, Jiang W, et al. IL-38 alleviates concanavalin A-induced liver injury in mice. International immunopharmacology. 2016;40:452–7. Epub 2016/10/11. doi: 10.1016/j.intimp.2016.09.023 27723569.
11. Chu M, Tam LS, Zhu J, Jiao D, Liu H, Cai Z, et al. In vivo anti-inflammatory activities of novel cytokine IL-38 in Murphy Roths Large (MRL)/lpr mice. Immunobiology. 2017;222(3):483–93. Epub 2016/10/23. doi: 10.1016/j.imbio.2016.10.012 27769564.
12. Xu F, Lin S, Yan X, Wang C, Tu H, Yin Y, et al. Interleukin 38 Protects Against Lethal Sepsis. The Journal of infectious diseases. 2018;218(7):1175–84. Epub 2018/05/16. doi: 10.1093/infdis/jiy289 29762676.
13. Xu K, Sun J, Chen S, Li Y, Peng X, Li M, et al. Hydrodynamic delivery of IL-38 gene alleviates obesity-induced inflammation and insulin resistance. Biochemical and biophysical research communications. 2019;508(1):198–202. Epub 2018/11/28. doi: 10.1016/j.bbrc.2018.11.114 30477747.
14. Takenaka S, Kaieda S, Kawayama T, Matsuoka M, Kaku Y, Kinoshita T, et al. IL-38: A new factor in rheumatoid arthritis. Biochemistry and Biophysics Reports. 2015;4:386–91. doi: 10.1016/j.bbrep.2015.10.015 29124228
15. Ciccia F, Accardo-Palumbo A, Alessandro R, Alessandri C, Priori R, Guggino G, et al. Interleukin-36alpha axis is modulated in patients with primary Sjogren's syndrome. Clin Exp Immunol. 2015;181(2):230–8. Epub 2015/04/24. doi: 10.1111/cei.12644 25902739; PubMed Central PMCID: PMC4516438.
16. Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, et al. Distinct expression of interleukin (IL)-36alpha, beta and gamma, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn's disease. Clin Exp Immunol. 2016;184(2):159–73. Epub 2015/12/25. doi: 10.1111/cei.12761 26701127; PubMed Central PMCID: PMC4837235.
17. Wang M, Wang B, Ma Z, Sun X, Tang Y, Li X, et al. Detection of the novel IL-1 family cytokines by QAH-IL1F-1 assay in rheumatoid arthritis. Cell Mol Biol (Noisy-le-grand). 2016;62(4):31–4. Epub 2016/05/18. 27188731.
18. Keermann M, Koks S, Reimann E, Abram K, Erm T, Silm H, et al. Expression of IL-36 family cytokines and IL-37 but not IL-38 is altered in psoriatic skin. J Dermatol Sci. 2015;80(2):150–2. Epub 2015/09/01. doi: 10.1016/j.jdermsci.2015.08.002 26319074.
19. Hessam S, Sand M, Gambichler T, Skrygan M, Ruddel I, Bechara FG. Interleukin-36 in hidradenitis suppurativa: evidence for a distinctive proinflammatory role and a key factor in the development of an inflammatory loop. The British journal of dermatology. 2018;178(3):761–7. Epub 2017/10/05. doi: 10.1111/bjd.16019 28975626.
20. Xu WD, Su LC, He CS, Huang AF. Plasma interleukin-38 in patients with rheumatoid arthritis. International immunopharmacology. 2018;65:1–7. Epub 2018/09/30. doi: 10.1016/j.intimp.2018.09.028 30268016.
21. Fonseca-Camarillo G, Furuzawa-Carballeda J, Iturriaga-Goyon E, Yamamoto-Furusho JK. Differential Expression of IL-36 Family Members and IL-38 by Immune and Nonimmune Cells in Patients with Active Inflammatory Bowel Disease. BioMed research international. 2018;2018:5140691. Epub 2019/01/16. doi: 10.1155/2018/5140691 30643810; PubMed Central PMCID: PMC6311241.
22. Chou CT, Timms AE, Wei JC, Tsai WC, Wordsworth BP, Brown MA. Replication of association of IL1 gene complex members with ankylosing spondylitis in Taiwanese Chinese. Annals of the rheumatic diseases. 2006;65(8):1106–9. Epub 2005/12/20. doi: 10.1136/ard.2005.046847 16361275; PubMed Central PMCID: PMC1798239.
23. Rahman P, Sun S, Peddle L, Snelgrove T, Melay W, Greenwood C, et al. Association between the interleukin-1 family gene cluster and psoriatic arthritis. Arthritis and rheumatism. 2006;54(7):2321–5. Epub 2006/08/19. doi: 10.1002/art.21928 16918024.
24. Guo ZS, Li C, Lin ZM, Huang JX, Wei QJ, Wang XW, et al. Association of IL-1 gene complex members with ankylosing spondylitis in Chinese Han population. International journal of immunogenetics. 2010;37(1):33–7. Epub 2009/11/26. doi: 10.1111/j.1744-313X.2009.00889.x 19930406.
25. Jung MY, Kang SW, Kim SK, Kim HJ, Yun DH, Yim SV, et al. The interleukin-1 family gene polymorphisms in Korean patients with rheumatoid arthritis. Scandinavian journal of rheumatology. 2010;39(3):190–6. Epub 2010/02/10. doi: 10.3109/03009740903447028 20141484.
26. Dehghan A, Dupuis J, Barbalic M, Bis JC, Eiriksdottir G, Lu C, et al. Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels. Circulation. 2011;123(7):731–8. Epub 2011/02/09. doi: 10.1161/CIRCULATIONAHA.110.948570 21300955; PubMed Central PMCID: PMC3147232.
27. Monnet D, Kadi A, Izac B, Lebrun N, Letourneur F, Zinovieva E, et al. Association between the IL-1 family gene cluster and spondyloarthritis. Annals of the rheumatic diseases. 2012;71(6):885–90. Epub 2012/02/09. doi: 10.1136/annrheumdis-2011-200439 22312160.
28. Soto Lopez ME, Gamboa Avila R, Hernandez E, Huesca-Gomez C, Castrejon-Tellez V, Perez-Mendez O, et al. The interleukin-1 gene cluster polymorphisms are associated with Takayasu's arteritis in Mexican patients. Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research. 2013;33(7):369–75. Epub 2013/03/12. doi: 10.1089/jir.2012.0126 23472661.
29. Ligthart S, de Vries PS, Uitterlinden AG, Hofman A, Franco OH, Chasman DI, et al. Pleiotropy among common genetic loci identified for cardiometabolic disorders and C-reactive protein. PloS one. 2015;10(3):e0118859. Epub 2015/03/15. doi: 10.1371/journal.pone.0118859 25768928; PubMed Central PMCID: PMC4358943.
30. Lachner J, Mlitz V, Tschachler E, Eckhart L. Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Scientific reports. 2017;7(1):17446. Epub 2017/12/14. doi: 10.1038/s41598-017-17782-4 29234126; PubMed Central PMCID: PMC5727156.
31. Rider P, Carmi Y, Voronov E, Apte RN. Interleukin-1alpha. Seminars in immunology. 2013;25(6):430–8. Epub 2013/11/05. doi: 10.1016/j.smim.2013.10.005 24183701.
32. Steenbergen RD, Walboomers JM, Meijer CJ, van der Raaij-Helmer EM, Parker JN, Chow LT, et al. Transition of human papillomavirus type 16 and 18 transfected human foreskin keratinocytes towards immortality: activation of telomerase and allele losses at 3p, 10p, 11q and/or 18q. Oncogene. 1996;13(6):1249–57. Epub 1996/09/19. 8808699.
33. Palomo J, Troccaz S, Talabot-Ayer D, Rodriguez E, Palmer G. The severity of imiquimod-induced mouse skin inflammation is independent of endogenous IL-38 expression. PloS one. 2018;13(3):e0194667. Epub 2018/03/20. doi: 10.1371/journal.pone.0194667 29554104.
34. Carta S, Lavieri R, Rubartelli A. Different Members of the IL-1 Family Come Out in Different Ways: DAMPs vs. Cytokines? Frontiers in immunology. 2013;4:123. Epub 2013/06/08. doi: 10.3389/fimmu.2013.00123 23745123; PubMed Central PMCID: PMC3662868.
35. Van Opdenbosch N, Lamkanfi M. Caspases in Cell Death, Inflammation, and Disease. Immunity. 2019;50(6):1352–64. Epub 2019/06/20. doi: 10.1016/j.immuni.2019.05.020 31216460; PubMed Central PMCID: PMC6611727.
36. Rider P, Voronov E, Dinarello CA, Apte RN, Cohen I. Alarmins: Feel the Stress. Journal of immunology (Baltimore, Md: 1950). 2017;198(4):1395–402. Epub 2017/02/09. doi: 10.4049/jimmunol.1601342 28167650.
37. Haskill S, Martin G, Van Le L, Morris J, Peace A, Bigler CF, et al. cDNA cloning of an intracellular form of the human interleukin 1 receptor antagonist associated with epithelium. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(9):3681–5. Epub 1991/05/01. doi: 10.1073/pnas.88.9.3681 1827201; PubMed Central PMCID: PMC51516.
38. Lee RT, Briggs WH, Cheng GC, Rossiter HB, Libby P, Kupper T. Mechanical deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist. Journal of immunology (Baltimore, Md: 1950). 1997;159(10):5084–8. Epub 1997/11/20. 9366437.
39. Mee JB, Antonopoulos C, Poole S, Kupper TS, Groves RW. Counter-regulation of interleukin-1alpha (IL-1alpha) and IL-1 receptor antagonist in murine keratinocytes. The Journal of investigative dermatology. 2005;124(6):1267–74. Epub 2005/06/16. doi: 10.1111/j.0022-202X.2005.23684.x 15955103.
40. Afonina IS, Muller C, Martin SJ, Beyaert R. Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme. Immunity. 2015;42(6):991–1004. Epub 2015/06/18. doi: 10.1016/j.immuni.2015.06.003 26084020.
41. Garraud T, Harel M, Boutet MA, Le Goff B, Blanchard F. The enigmatic role of IL-38 in inflammatory diseases. Cytokine & growth factor reviews. 2018;39:26–35. Epub 2018/01/26. doi: 10.1016/j.cytogfr.2018.01.001 29366546.
42. Fields JK, Gunther S, Sundberg EJ. Structural Basis of IL-1 Family Cytokine Signaling. Frontiers in immunology. 2019;10:1412. Epub 2019/07/10. doi: 10.3389/fimmu.2019.01412 31281320; PubMed Central PMCID: PMC6596353.
43. Han Y, Mora J, Huard A, da Silva P, Wiechmann S, Putyrski M, et al. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from gammadelta T Cells. Cell reports. 2019;27(3):835–46.e5. Epub 2019/04/18. doi: 10.1016/j.celrep.2019.03.082 30995480.
44. Kanellos G, Zhou J, Patel H, Ridgway RA, Huels D, Gurniak CB, et al. ADF and Cofilin1 Control Actin Stress Fibers, Nuclear Integrity, and Cell Survival. Cell reports. 2015;13(9):1949–64. Epub 2015/12/15. doi: 10.1016/j.celrep.2015.10.056 26655907; PubMed Central PMCID: PMC4678118.
45. Yin H, Morioka H, Towle CA, Vidal M, Watanabe T, Weissbach L. Evidence that HAX-1 is an interleukin-1 alpha N-terminal binding protein. Cytokine. 2001;15(3):122–37. Epub 2001/09/14. doi: 10.1006/cyto.2001.0891 11554782.
46. Hu B, Wang S, Zhang Y, Feghali CA, Dingman JR, Wright TM. A nuclear target for interleukin-1alpha: interaction with the growth suppressor necdin modulates proliferation and collagen expression. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(17):10008–13. Epub 2003/08/13. doi: 10.1073/pnas.1737765100 12913118; PubMed Central PMCID: PMC187743.
47. Banda NK, Guthridge C, Sheppard D, Cairns KS, Muggli M, Bech-Otschir D, et al. Intracellular IL-1 receptor antagonist type 1 inhibits IL-1-induced cytokine production in keratinocytes through binding to the third component of the COP9 signalosome. Journal of immunology (Baltimore, Md: 1950). 2005;174(6):3608–16. Epub 2005/03/08. doi: 10.4049/jimmunol.174.6.3608 15749898.
48. Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL-37 is a fundamental inhibitor of innate immunity. Nature immunology. 2010;11(11):1014–22. Epub 2010/10/12. doi: 10.1038/ni.1944 20935647; PubMed Central PMCID: PMC3537119.
49. Verdoni AM, Smith RS, Ikeda A, Ikeda S. Defects in actin dynamics lead to an autoinflammatory condition through the upregulation of CXCL5. PloS one. 2008;3(7):e2701. Epub 2008/07/17. doi: 10.1371/journal.pone.0002701 18628996; PubMed Central PMCID: PMC2442876.
50. Vaezi A, Bauer C, Vasioukhin V, Fuchs E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Developmental cell. 2002;3(3):367–81. Epub 2002/10/04. doi: 10.1016/s1534-5807(02)00259-9 12361600.
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF