Selection for tandem stop codons in ciliate species with reassigned stop codons
Autoři:
Ira Fleming aff001; Andre R. O. Cavalcanti aff001
Působiště autorů:
Department of Molecular Biology, Pomona College, Claremont, CA, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225804
Souhrn
The failure of mRNA translation machinery to recognize a stop codon as a termination signal and subsequent translation of the 3’ untranslated region (UTR) is referred to as stop codon readthrough, the frequency of which is related to the length, composition, and structure of mRNA sequences downstream of end-of-gene stop codons. Secondary in-frame stop codons within a few positions downstream of the primary stop codons, so-called tandem stop codons (TSCs), serve as backup termination signals, which limit the effects of readthrough: polypeptide product degradation, mislocalization, and aggregation. In this study, ciliate species with UAA and UAG stop codons reassigned to code for glutamine are found to possess statistical excesses of TSCs at the beginning of their 3’ UTRs. The overrepresentation of TSCs in these species is greater than that observed in standard code organisms. Though the overall numbers of TSCs are lower in most species with alternative stop codons because they use fewer than three unique stop codons, the relatively great overrepresentation of TSCs in alternative-code ciliate species suggests that there exist stronger selective pressures to maintain TSCs in these organisms compared to standard code organisms.
Klíčová slova:
Genome annotation – Eukaryota – Messenger RNA – Genomic libraries – Untranslated regions – 3' UTR – Tetrahymena thermophila – Signal termination
Zdroje
1. Korostelev AA. Structural aspects of translation termination on the ribosome. RNA. 2011; 17: 1409–1421. doi: 10.1261/rna.2733411 21700725
2. Arribere JA, Cenik ES, Jain N, Hess GT, Lee CH, Bassik MC, et al. Translation Readthrough Mitigation. Nature. 2016; 534: 719–723. doi: 10.1038/nature18308 27281202
3. Namy O, Duchateau-Nguyen G, Rousset J-P. Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol Microbiol. 2002; 43: 641–652. doi: 10.1046/j.1365-2958.2002.02770.x 11929521
4. Bonetti B, Fu L, Moon J, Bedwell DM. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol. 1995; 251: 334–345. doi: 10.1006/jmbi.1995.0438 7650736
5. Namy O, Hatin I, Rousset J-P. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep. 2001; 2: 787–793. doi: 10.1093/embo-reports/kve176 11520858
6. Namy O, Rousset J-P. Specification of Standard Amino Acids by Stop Codons. In: Atkins JF, Gesteland RF, editors. Recoding: Expansion of Decoding Rules Enriches Gene Expression. New York, NY: Springer New York; 2010. pp. 79–100. doi: 10.1007/978-0-387-89382-2_4
7. Merritt GH, Naemi WR, Mugnier P, Webb HM, Tuite MF, von der Haar T. Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast. Nucleic Acids Res. 2010; 38: 5479–5492. doi: 10.1093/nar/gkq338 20444877
8. Hou J, Friedrich A, Gounot J-S, Schacherer J. Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast. Nat Commun. 2015; 6: 7214. doi: 10.1038/ncomms8214 26008139
9. Plant EP, Nguyen P, Russ JR, Pittman YR, Nguyen T, Quesinberry JT, et al. Differentiating between Near- and Non-Cognate Codons in Saccharomyces cerevisiae. PLOS ONE. 2007; 2: e517. doi: 10.1371/journal.pone.0000517 17565370
10. Csibra E, Brierley I, Irigoyen N. Modulation of Stop Codon Read-Through Efficiency and Its Effect on the Replication of Murine Leukemia Virus. J Virol. 2014; 88: 10364–10376. doi: 10.1128/JVI.00898-14 24991001
11. Steneberg P, Samakovlis C. A novel stop codon readthrough mechanism produces functional Headcase protein in Drosophila trachea. EMBO Rep. 2001; 2: 593–597. doi: 10.1093/embo-reports/kve128 11463742
12. Liebman SW, Sherman F. Inhibition of growth by amber suppressors in yeast. Genetics. 1976; 82: 233–249. 177332
13. Klauer AA, van Hoof A. Degradation of mRNAs that lack a stop codon: a decade of nonstop progress. Wiley Interdiscip Rev RNA. 2012; 3: 649–660. doi: 10.1002/wrna.1124 22740367
14. Inada T, Aiba H. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3’-UTR is repressed after initiation in yeast. EMBO J. 2005; 24: 1584–1595. doi: 10.1038/sj.emboj.7600636 15933721
15. Shibata N, Ohoka N, Sugaki Y, Onodera C, Inoue M, Sakuraba Y, et al. Degradation of Stop Codon Read-through Mutant Proteins via the Ubiquitin-Proteasome System Causes Hereditary Disorders. J Biol Chem. 2015; 290: 28428–28437. doi: 10.1074/jbc.M115.670901 26442586
16. Hollingsworth TJ, Gross AK. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death. J Biol Chem. 2013; 288: 29047–29055. doi: 10.1074/jbc.M113.495184 23940033
17. Vidal R, Frangione B, Rostagno A, Mead S, Révész T, Plant G, et al. A stop-codon mutation in the BRI gene associated with familial British dementia. Nature. 1999; 399: 776–781. doi: 10.1038/21637 10391242
18. Nichols JL. Nucleotide Sequence from the Polypeptide Chain Termination Region of the Coat Protein Cistron in Bacteriophage R17 RNA. Nature. 1970; 225: 147–151. doi: 10.1038/225147a0 5409960
19. Lu P, Rich A. The nature of the polypeptide chain termination signal. J Mol Biol. 1971; 58: 513–531. doi: 10.1016/0022-2836(71)90368-8 4933415
20. Liang H, Cavalcanti AR, Landweber LF. Conservation of tandem stop codons in yeasts. Genome Biol. 2005; 6: R31. doi: 10.1186/gb-2005-6-4-r31 15833118
21. Kochetov AV, Volkova OA, Poliakov A, Dubchak I, Rogozin IB. Tandem termination signal in plant mRNAs. Gene. 2011; 481: 1–6. doi: 10.1016/j.gene.2011.04.002 21539902
22. Salas-Marco J, Fan-Minogue H, Kallmeyer AK, Klobutcher LA, Farabaugh PJ, Bedwell DM. Distinct Paths To Stop Codon Reassignment by the Variant-Code Organisms Tetrahymena and Euplotes. Mol Cell Biol. 2006; 26: 438–447. doi: 10.1128/MCB.26.2.438-447.2006 16382136
23. Lozupone C, Knight R, Landweber L. The molecular basis of nuclear genetic code change in ciliates. Curr Biol. 2001; 11: 65–74. doi: 10.1016/s0960-9822(01)00028-8 11231122
24. Adachi M, Cavalcanti ARO. Tandem stop codons in ciliates that reassign stop codons. J Mol Evol. 2009; 68: 424–431. doi: 10.1007/s00239-009-9220-y 19294453
25. Swart EC, Serra V, Petroni G, Nowacki M. Genetic Codes with No Dedicated Stop Codon: Context-Dependent Translation Termination. Cell. 2016; 166: 691–702. doi: 10.1016/j.cell.2016.06.020 27426948
26. Bachvaroff TR. A precedented nuclear genetic code with all three termination codons reassigned as sense codons in the syndinean Amoebophrya sp. ex Karlodinium veneficum. PLoS ONE. 2019; 14(2): e0212912. doi: 10.1371/journal.pone.0212912 30818350
27. Stover NA, Punia RS, Bowen MS, Dolins SB, Clark TG. Tetrahymena genome database Wiki: a community-maintained model organism database. Database. 2012; bas007. doi: 10.1093/database/bas007 22434841
28. Wang RL, Miao W, Wang W, Xiong J, Liang AH. EOGD: the Euplotes octocarinatus genome database. BMC Genomics. 2018; 19(1), 63. doi: 10.1186/s12864-018-4445-z 29351734
29. Fu C, Xiong J, Miao W. Genome-wide identification and characterization of cytochrome P450 monooxygenase genes in the ciliate Tetrahymena thermophila. BMC Genomics. 2009; 10(1), 208. doi: 10.1186/1471-2164-10-208 19409101
30. Sharp PM, Li WH. The codon Adaptation Index–a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987; 15, 1281–1295 doi: 10.1093/nar/15.3.1281 3547335
31. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, et al. Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote. PLoS Biol. 2006; 4(9): e286. doi: 10.1371/journal.pbio.0040286 16933976
32. Jungreis I, Lin MF, Spokony R, Chan CS, Negre N, Victorsen A, et al. Evidence of Abundant Stop Codon Readthrough in Drosophila and Other Metazoa. Genome Res. 2011; 21: 2096–2113. doi: 10.1101/gr.119974.110 21994247
33. Eliseev BD, Alkalaeva EZ, Kryuchkova PN, Lekomtsev SA, Wang W, Liang AH, Frolova LY. Translation termination factor eRF1 of the ciliate Blepharisma japonicum recognizes all three stop codons. Mol Biol. 2011; 45(4), 614–618. doi: 10.1134/S0026893311040030
34. Slabodnick MM, Ruby JG, Reiff SB, Swart EC, Gosai S, Prabakaran S, et al. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Curr Biol. 2017; 27(4), 569–575. doi: 10.1016/j.cub.2016.12.057 28190732
35. Lekomtsev S, Kolosov P, Bidou L, Frolova L, Rousset J-P, Kisselev L. Different modes of stop codon restriction by the Stylonychia and Paramecium eRF1 translation termination factors. Proc Natl Acad Sci U S A. 2007; 104: 10824–10829. doi: 10.1073/pnas.0703887104 17573528
36. Conard SE, Buckley J, Dang M, Bedwell GJ, Carter RL, Khass M, et al. Identification of eRF1 residues that play critical and complementary roles in stop codon recognition. RNA N Y N. 2012; 18: 1210–1221. doi: 10.1261/rna.031997.111 22543865
37. Fort P, Kajava AV, Delsuc F, Coux O. Evolution of Proteasome Regulators in Eukaryotes. Genome Biol Evol. 2015; 7: 1363–1379. doi: 10.1093/gbe/evv068 25943340
38. Templeton TJ, Iyer LM, Anantharaman V, Enomoto S, Abrahante JE, Subramanian GM, et al. Comparative Analysis of Apicomplexa and Genomic Diversity in Eukaryotes. Genome Res. 2004; 14: 1686–1695. doi: 10.1101/gr.2615304 15342554
Článok vyšiel v časopise
PLOS One
2019 Číslo 11
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Dlouhodobá recidiva a komplikace spojené s elektivní operací břišní kýly
Najčítanejšie v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF