#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A proteomic clock for malignant gliomas: The role of the environment in tumorigenesis at the presymptomatic stage


Autoři: Le Zheng aff001;  Yan Zhang aff003;  Shiying Hao aff001;  Lin Chen aff004;  Zhen Sun aff004;  Chi Yan aff004;  John C. Whitin aff005;  Taichang Jang aff006;  Milton Merchant aff006;  Doff B. McElhinney aff001;  Karl G. Sylvester aff004;  Harvey J. Cohen aff005;  Lawrence Recht aff006;  Xiaoming Yao aff002;  Xuefeng B. Ling aff002
Působiště autorů: Department of Cardiothoracic Surgery, Stanford University, Stanford, California, United States of America aff001;  Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America aff002;  Department of Oncology, the First Hospital of Shijiazhuang, Shijiazhuang, Hebei, China aff003;  Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America aff004;  Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America aff005;  Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America aff006
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223558

Souhrn

Malignant gliomas remain incurable with a poor prognosis despite of aggressive treatment. We have been studying the development of brain tumors in a glioma rat model, where rats develop brain tumors after prenatal exposure to ethylnitrosourea (ENU), and there is a sizable interval between when the first pathological changes are noted and tumors become detectable with MRI. Our aim to define a molecular timeline through proteomic profiling of the cerebrospinal fluid (CSF) such that brain tumor commitment can be revealed earlier than at the presymptomatic stage. A comparative proteomic approach was applied to profile CSF collected serially either before, at and after the time MRI becomes positive. Elastic net (EN) based models were developed to infer the timeline of normal or tumor development respectively, mirroring a chronology of precisely timed, “clocked”, adaptations. These CSF changes were later quantified by longitudinal entropy analyses of the EN predictive metric. False discovery rates (FDR) were computed to control the expected proportion of the EN models that are due to multiple hypothesis testing. Our ENU rat brain tumor dating EN model indicated that protein content in CSF is programmed even before tumor MRI detection. The findings of the precisely timed CSF tumor microenvironment changes at presymptomatic stages, deviation from the normal development timeline, may provide the groundwork for the understanding of adaptation of the brain environment in tumorigenesis to devise effective brain tumor management strategies.

Klíčová slova:

Magnetic resonance imaging – Proteomes – Carcinogenesis – Entropy – Proteomics – Cytopathology – Cerebrospinal fluid – Glioma


Zdroje

1. Koestner A. Neurogenic tumors, animal model of human disease. Comp Pathology Bull. 1978;10:2–3.

2. Burnet NG, Jefferies SJ, Benson RJ, Hunt DP, and Treasure FP. Years of life lost (YLL) from cancer is an important measure of population burden–and should be considered when allocating research funds. Br J Cancer. 2005 Jan 31;92(2):241–5. https://www.ncbi.nlm.nih.gov/pubmed/15655548 doi: 10.1038/sj.bjc.6602321 15655548

3. Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, et al. Tracking tumor evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019 Jan 23: 565: 654–658. doi: 10.1038/s41586-019-0882-3 30675060

4. Swann PF, and Magee PN. The alkylation of N-7 of guanine of nucleic acids of the rat by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl mthanesulphonate. Biochem J. 1971;125:841–7. doi: 10.1042/bj1250841 5145908

5. Müller R, and Rajewsky MF. Elimination of O6-ethylguanine from the DNA of brain, liver and other rat tissues exposed to ethylnitrosourea at different stages of prenatal development. Cancer Res. 1983;43:2897–2904. 6850601

6. Jang T, Sathy B, Hsu YH, Merchant M, Recht B, Chang C, et al. A distinct phenotypic change in gliomas at the time of magnetic resonance imaging detection. J Neurosurg. 2008 Apr;108(4):782–90. https://www.ncbi.nlm.nih.gov/pubmed/18377259 doi: 10.3171/JNS/2008/108/4/0782 18377259

7. Jang T, Savarese T, Low HP, Kim S, Vogel H, Lapointe D, et al. Osteopontin expression in intratumoral astrocytes marks tumor progression in gliomas induced by prenatal exposure to N-ethyl-N-nitrosourea. Am J Pathol. 2006 May;168(5):1676–85. https://www.ncbi.nlm.nih.gov/pubmed/16651633 doi: 10.2353/ajpath.2006.050400 16651633

8. Tan Z, Liu R, Zheng L, Hao S, Fu C, Li Z, et al. Cerebrospinal fluid protein dynamic driver network: At the crossroads of brain tumorigenesis. Methods. 2015 Jul 15;83:36–43. https://www.ncbi.nlm.nih.gov/pubmed/25982164 doi: 10.1016/j.ymeth.2015.05.004 25982164

9. Whitin JC, Jang T, Merchant M, Yu TS, Lau Kenneth, Recht B, et al. Alterations in cerebrospinal fluid proteins in a presymptomatic primary glioma model. PLoS One. 2012;7(11):e49724. https://www.ncbi.nlm.nih.gov/pubmed/23185417 doi: 10.1371/journal.pone.0049724 23185417

10. Alvarez L, Comendador MA, Sierra LM. Effect of nucleotide excision repair on ENU-induced mutation in femaile germ cells of Drosophila melanogaster. Env Molec Mutagenesis. 2003;41:270–279.

11. Imai Y, Feldman B, Schier AF, and Talbot WS. Analysis of chromosomal rearrangements induced by postmeiotic mutagenesis with ethylnitrosourea in zebrafish. Genetics. 2000 May;155(1):261–72. https://www.ncbi.nlm.nih.gov/pubmed/10790400 10790400

12. Carlson SM, Najmi A, Whitin JC, and Cohen HJ. Improving feature detection and analysis of surface-enhanced laser desorption/ionization-time of flight mass spectra. Proteomics. 2005 Jul;5(11):2778–88. https://www.ncbi.nlm.nih.gov/pubmed/15986333 doi: 10.1002/pmic.200401184 15986333

13. Ji J, Ling J, Jiang H, Wen Q, Whitine JC, Tian L, et al. Cloud-based solution to identify statistically significant MS peaks differentiating sample categories. BMC Res Notes. 2013 Mar 23;6:109. https://www.ncbi.nlm.nih.gov/pubmed/23522030 doi: 10.1186/1756-0500-6-109 23522030

14. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, and Rubin DB. Bayesian Data Analysis. Third Edition. 2013.

15. Zou H, Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B. Methodol. 2005;67:301–320.

16. Neglia JP, Robison LL, Stovall M, Liu Y, Packer RJ, Hammond S, et al. New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2006 Nov 1;98(21):1528–37. https://www.ncbi.nlm.nih.gov/pubmed/17077355 doi: 10.1093/jnci/djj411 17077355

17. Alves JL, and Santiago J. Screening for brain cancer: why (not). World Neurosurgery. 2014 Dec; 82(6): e841–e843. doi: 10.1016/j.wneu.2014.08.052 25173448

18. Gahoi N, Malhotra D, Moiyadi A, Varma SG, Gandhi MN, and Srivastava S. Multi-pronged proteomic analysis to study the glioma pathobiology using cerebrospinal fluid samples. Proteomics Clin Appl. 2018 Mar; 12(2). https://www.ncbi.nlm.nih.gov/pubmed/29521036


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#