Do older English adults exhibit day-to-day compensation in sedentary time and in prolonged sedentary bouts? An EPIC-Norfolk cohort analysis
Autoři:
Dharani Yerrakalva aff001; Katrien Wijndaele aff002; Samantha Hajna aff002; Kate Westgate aff002; Kay-Tee Khaw aff001; Nick Wareham aff002; Simon J. Griffin aff001; Soren Brage aff002
Působiště autorů:
Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
aff001; MRC Epidemiology Unit, University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224225
Souhrn
Introduction
Compensatory behaviours may be one of the reasons for the limited success of sedentary time interventions in older adults, but this possibility remains unexplored. Activity compensation is the idea that if we change activity levels at one time we compensate for them at a later time to maintain a set point. We aimed to assess, among adults aged ≥60 years, whether sedentary time and time spent in prolonged sedentary bouts (≥30 mins) on one day were associated with sedentary time and time spent in prolonged sedentary bouts (≥30 mins) on the following day. We also sought to determine whether these associations varied by sociodemographic and comorbid factors.
Methods
Sedentary time was assessed for seven days using hip-worn accelerometers (ActiGraph GT1M) for 3459 adults who participated in the EPIC-Norfolk Study between 2004 and 2011. We assessed day-to-day associations in total and prolonged bouts of sedentary time using multi-level regressions. We included interaction terms to determine whether associations varied by age, sex, smoking, body mass index, social class, retirement, education and comorbid factors (stroke, diabetes, myocardial infarction and cancer).
Results
Participants (mean age = 70.3, SD = 6.8 years) accumulated 540 sedentary mins/day (SD = 80.1). On any given day, every 60 minutes spent in sedentary time was associated with 9.9 extra sedentary minutes on the following day (95% CI 9.0, 10.2). This association was greater in non-retired compared to retired participants (non-retired 2.57 extra minutes, p = 0.024) and in current compared to former and never-smokers (5.26 extra mins for current vs former; 5.52 extra mins for current vs never, p = 0.023 and 0.017, respectively). On any given day, every 60 minutes spent in prolonged bouts was associated with 7.8 extra minutes in these bouts the following day (95% CI 7.6, 8.4). This association was greater in older individuals (0.18 extra minutes/year of age, 95% CI 0.061, 0.29), and for retired versus non-retired (retired 2.74 extra minutes, 95% CI 0.21, 5.74).
Conclusion
Older adults did not display day-to-day compensation. Instead, individuals demonstrate a large stable component of day-to-day time spent sedentary and in prolonged bouts with a small but important capacity for positive variation. Therefore older adults appear to be largely habitual in their sedentary behaviour. Strategies to augment these patterns may be possible, given they may differ by age, smoking, and working status.
Klíčová slova:
Body Mass Index – Physical activity – Elderly – Habits – Myocardial infarction – Accelerometers – Social stratification
Zdroje
1. Schmid D, Ricci C, Leitzmann MF. Associations of objectively assessed physical activity and sedentary time with all-cause mortality in US adults: the NHANES study. PLoS One. 2015;10: e0119591. doi: 10.1371/journal.pone.0119591 25768112
2. Koster A, Caserotti P, Patel K V., Matthews CE, Berrigan D, Van Domelen DR, et al. Association of Sedentary Time with Mortality Independent of Moderate to Vigorous Physical Activity. Ruiz JR, editor. PLoS One. 2012;7: e37696. doi: 10.1371/journal.pone.0037696 22719846
3. Brocklebank LA, Falconer CL, Page AS, Perry R, Cooper AR. Accelerometer-measured sedentary time and cardiometabolic biomarkers: A systematic review. Prev Med (Baltim). 2015;76: 92–102. doi: 10.1016/j.ypmed.2015.04.013 25913420
4. Patterson R, McNamara E, Tainio M, de Sá TH, Smith AD, Sharp SJ, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol. 2018 [cited 22 Jul 2018]. doi: 10.1007/s10654-018-0380-1 29589226
5. Harvey JA, Chastin SFM, Skelton DA. How Sedentary Are Older People? A Systematic Review of the Amount of Sedentary Behavior. J Aging Phys Act. 2015;23: 471–487. doi: 10.1123/japa.2014-0164 25387160
6. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35: 976–83. doi: 10.2337/dc11-1931 22374636
7. Saunders TJ, Larouche R, Colley RC, Tremblay MS. Acute sedentary behaviour and markers of cardiometabolic risk: a systematic review of intervention studies. J Nutr Metab. 2012;2012: 712435. doi: 10.1155/2012/712435 22754695
8. Diaz KM, Howard VJ, Hutto B, Colabianchi N, Vena JE, Safford MM, et al. Patterns of Sedentary Behavior and Mortality in U.S. Middle-Aged and Older Adults. Ann Intern Med. 2017;167: 465. doi: 10.7326/M17-0212 28892811
9. Henson J, Yates T, Biddle SJH, Edwardson CL, Repository I, Henson J, et al. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia. 2013;56: 1012–20. doi: 10.1007/s00125-013-2845-9 23456209
10. Shrestha N, Grgic J, Wiesner G, Parker A, Podnar H, Bennie JA, et al. Effectiveness of interventions for reducing non-occupational sedentary behaviour in adults and older adults: a systematic review and meta-analysis. Br J Sports Med. 2018; bjsports-2017-098270. doi: 10.1136/bjsports-2017-098270 29331992
11. Gomersall SR, Rowlands A V, English C, Maher C, Olds TS. The ActivityStat Hypothesis The Concept, the Evidence and the Methodologies. 2012 [cited 1 Feb 2019]. doi: 10.1007/s40279-012-0008-7 23329607
12. Ridgers ND, Barnett LM, Lubans DR, Timperio A, Cerin E, Salmon J. Potential moderators of day-to-day variability in children’s physical activity patterns. J Sports Sci. 2018;36: 637–644. doi: 10.1080/02640414.2017.1328126 28532318
13. Garland T, Schutz H, Chappell MA, Keeney BK, Meek TH, Copes LE, et al. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol. 2011;214: 206–229. doi: 10.1242/jeb.048397 21177942
14. Thorburn AW, Proietto J. Biological determinants of spontaneous physical activity. Obes Rev. 2000;1: 87–94. Available: http://www.ncbi.nlm.nih.gov/pubmed/12119990 12119990
15. Gray P, Murphy M, Gallagher A, Simpson EEA. A qualitative investigation of physical activity compensation among older adults. Br J Health Psychol. 2018;23: 208–224. doi: 10.1111/bjhp.12282 29171704
16. Harvey JA, Chastin SFM, Skelton DA. Prevalence of sedentary behavior in older adults: a systematic review. Int J Environ Res Public Health. 2013;10: 6645–61. doi: 10.3390/ijerph10126645 24317382
17. Hayat SA, Luben R, Keevil VL, Moore S, Dalzell N, Bhaniani A, et al. Cohort profile: A prospective cohort study of objective physical and cognitive capability and visual health in an ageing population of men and women in Norfolk (EPIC-Norfolk 3). Int J Epidemiol. 2014;43: 1063–1072. doi: 10.1093/ije/dyt086 23771720
18. Day N, Oakes S, Luben R, Khaw KT, Bingham S, Welch A, et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer. 1999;80 Suppl 1: 95–103. Available: http://www.ncbi.nlm.nih.gov/pubmed/10466767
19. Copeland JL, Esliger DW. Accelerometer assessment of physical activity in active, healthy older adults. J Aging Phys Act. 2009;17: 17–30. 19299836
20. Kozey-Keadle S, Libertine A, Lyden K, STAUDENMAYER J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43: 1561–7. doi: 10.1249/MSS.0b013e31820ce174 21233777
21. World Health Organisation. WHO | Ageing and life-course. In: Ageing and lifecourse [Internet]. World Health Organization; 2013 [cited 12 Sep 2018]. Available: http://www.who.int/ageing/en/
22. Ojiambo R, Cuthill R, Budd H, Konstabel K, Casajús JA, González-Agüero A, et al. Impact of methodological decisions on accelerometer outcome variables in young children. Int J Obes (Lond). 2011;35 Suppl 1: S98–S103. doi: 10.1038/ijo.2011.40 21483428
23. Edwardson CL, GORELY T. Epoch length and its effect on physical activity intensity. Med Sci Sports Exerc. 2010;42: 928–934. doi: 10.1249/MSS.0b013e3181c301f5 19996997
24. Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95: 437–45. doi: 10.3945/ajcn.111.019620 22218159
25. Ridgers ND, Salmon J, Ridley K, O’Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children’s sedentary time. Int J Behav Nutr Phys Act. 2012;9: 15. doi: 10.1186/1479-5868-9-15 22340137
26. Aguilar-Farías N, Brown WJ, Peeters GMEE Geeske MEEG. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J Sci Med Sport. 2014;17: 293–9. doi: 10.1016/j.jsams.2013.07.002 23932934
27. Lee I, Shiroma EJ. Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Br J Sports Med. 2014;48: 197–201. doi: 10.1136/bjsports-2013-093154 24297837
28. Lyden K, Kozey Keadle SL, Staudenmayer JW, Freedson PS. Validity of Two Wearable Monitors to Estimate Breaks from Sedentary Time. Med Sci Sport Exerc. 2012;44: 2243–2252. doi: 10.1249/MSS.0b013e318260c477 22648343
29. Hall KS, Howe CA, Rana SR, Martin CL, Morey MC. METs and accelerometry of walking in older adults: Standard versus measured energy cost. Med Sci Sports Exerc. 2013;45: 574–582. doi: 10.1249/MSS.0b013e318276c73c 23059862
30. Ried-Larsen M, Brønd JC, Brage S, Hansen BH, Grydeland M, Andersen LB, et al. Mechanical and free living comparisons of four generations of the Actigraph activity monitor. Int J Behav Nutr Phys Act. 2012;9: 113. doi: 10.1186/1479-5868-9-113 22971175
31. MRC Epidemiology. EPIC-Norfolk: health check and laboratory protocol. 2015 [cited 12 Sep 2018]. Available: http://www.srl.cam.ac.uk/epic/about/protocols.shtml
32. Stata. xtmixed: Multilevel mixed-effects linear regression. Stata 12 User’s guide. 2012. pp. 302–354. doi:S096098220300575X [pii]
33. Ridgers ND, Timperio A, Cerin E, Salmon J. Within- and between-day associations between children’s sitting and physical activity time. BMC Public Health. 2015;15. doi: 10.1186/s12889-015-2291-3 26400793
34. Houlihan S. Dual-process models of health-related behaviour and cognition: a review of theory. Public Health. 2018;156: 52–59. doi: 10.1016/j.puhe.2017.11.002 29408189
35. Nilsen P, Roback K, Broström A, Ellström E. Creatures of habit: accounting for the role of habit in implementation research on clinical behaviour change. 2012. Available: http://www.implementationscience.com/content/7/1/53
36. Wood W, Unger DR¨. Psychology of Habit. 2015 [cited 4 Sep 2019]. doi: 10.1146/annurev-psych-122414-033417 26361052
37. Maher JP, Conroy DE. A dual-process model of older adults’ sedentary behavior. Heal Psychol. 2016;35: 262–272. doi: 10.1037/hea0000300 26690644
38. Lally P, Wardle J, Gardner B. Experiences of habit formation: A qualitative study. Psychol Health Med. 2011;16: 484–489. doi: 10.1080/13548506.2011.555774 21749245
39. Gardner B. A review and analysis of the use of “habit” in understanding, predicting and influencing health-related behaviour. Health Psychol Rev. 2014;0. doi: 10.1080/17437199.2013.876238 25207647
40. Hall PA, Fong GT. Temporal self-regulation theory: A model for individual health behavior. Health Psychol Rev. 2007;1: 6–52. doi: 10.1080/17437190701492437
41. Rothman AJ, Sheeran P, Wood W. Reflective and Automatic Processes in the Initiation and Maintenance of Dietary Change. Ann Behav Med. 2009;38: 4–17. doi: 10.1007/s12160-009-9130-7
42. Bamberg S. Is a Residential Relocation a Good Opportunity to Change People’s Travel Behavior? Results From a Theory-Driven Intervention Study. Environ Behav. 2006;38: 820–840. doi: 10.1177/0013916505285091
43. Heatherton TF, Nichols PA. Personal Accounts of Successful Versus Failed Attempts at Life Change. Personal Soc Psychol Bull. 1994;20: 664–675. doi: 10.1177/0146167294206005
44. Wood W, Tam L, Witt MG. Changing circumstances, disrupting habits. J Pers Soc Psychol. 2005;88: 918–933. doi: 10.1037/0022-3514.88.6.918 15982113
45. Sprod J, Ferrar K, Olds T, Maher C. Changes in sedentary behaviours across the retirement transition: A systematic review. Age and Ageing. 2015. pp. 918–925. doi: 10.1093/ageing/afv140 26504115
46. Di Blasio A, Ripari P, Bucci I, Di Donato F, Izzicupo P, D’Angelo E, et al. Walking training in postmenopause. Menopause J North Am Menopause Soc. 2012;19: 23–32. doi: 10.1097/gme.0b013e318223e6b3 21993080
47. Di Blasio A, Di Donato F, Di Santo S, Bucci I, Izzicupo P, Di Baldassarre A, et al. Aerobic physical exercise and negative compensation of non-exercise physical activity in post-menopause: a pilot study. J Sports Med Phys Fitness. 2018;58: 1497–1508. doi: 10.23736/S0022-4707.17.07320-0 28597615
48. Hunter GR, Bickel CS, Fisher G, Neumeier WH, Mccarthy JP. Combined Aerobic and Strength Training and Energy Expenditure in Older Women. Med Sci Sport Exerc. 2013;45: 1386–1393. doi: 10.1249/MSS.0b013e3182860099 23774582
49. Goran MI, Poehlman ET. Endurance training does not enhance total energy expenditure in healthy elderly persons. Am J Physiol Metab. 1992;263: E950–E957. doi: 10.1152/ajpendo.1992.263.5.E950 1443128
50. Mcneil J, Brenner DR, Courneya KS, Friedenreich CM. Dose–response effects of aerobic exercise on energy compensation in postmenopausal women: combined results from two randomized controlled trials. Int J Obes. 2017;41: 1196–1202. doi: 10.1038/ijo.2017.87 28360432
51. Wang X, Bowyer KP, Porter RR, Breneman CB, Custer SS. Energy expenditure responses to exercise training in older women. Physiol Rep. 2017;5. doi: 10.14814/phy2.13360 28774950
52. Donaldson SC, Montoye AHK, Tuttle MS, Kaminsky LA. Variability of Objectively Measured Sedentary Behavior. Med Sci Sports Exerc. 2016;48: 755–61. doi: 10.1249/MSS.0000000000000828 26606270
53. Jefferis BJ, Sartini C, Shiroma E, Whincup PH, Wannamethee SG, Lee I-M. Duration and breaks in sedentary behaviour: accelerometer data from 1566 community-dwelling older men (British Regional Heart Study). Br J Sports Med. 2014;49: 1591–1594. doi: 10.1136/bjsports-2014-093514 25232029
54. Shiroma EJ, Freedson PS, Trost SG, Lee I. Patterns of accelerometer-assessed sedentary behavior in older women. Jama. 2013;310: 2562–2563. doi: 10.1001/jama.2013.278896 24346993
55. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population. Am J Epidemiol. 2017;186: 1026–1034. doi: 10.1093/aje/kwx246 28641372
56. Bassett DR, John D, Conger SA, Rider BC, Passmore RM, Clark JM. Detection of lying down, sitting, standing, and stepping using two activPAL monitors. Med Sci Sports Exerc. 2014;46: 2025–2029. doi: 10.1249/MSS.0000000000000326 24598698
57. Barreira T V., Zderic TW, Schuna JM, Hamilton MT, Tudor-Locke C. Free-living activity counts-derived breaks in sedentary time: Are they real transitions from sitting to standing? Gait Posture. 2015;42: 70–72. doi: 10.1016/j.gaitpost.2015.04.008 25953504
58. Júdice PB, Santos DA, Hamilton MT, Sardinha LB, Silva AM. Validity of GT3X and Actiheart to estimate sedentary time and breaks using ActivPAL as the reference in free-living conditions. Gait Posture. 2015;41: 917–922. doi: 10.1016/j.gaitpost.2015.03.326 25852024
59. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43: 357–364. doi: 10.1249/MSS.0b013e3181ed61a3 20581716
60. Mailey EL, Gothe NP, Wójcicki TR, Szabo AN, Olson EA, Mullen SP, et al. Influence of allowable interruption period on estimates of accelerometer wear time and sedentary time in older adults. J Aging Phys Act. 2014;22: 255–260. doi: 10.1123/japa.2013-0021 23752299
61. Clemes SA, Deans NK. Presence and duration of reactivity to pedometers in adults. Med Sci Sports Exerc. 2012;44: 1097–1101. doi: 10.1249/MSS.0b013e318242a377 22595985
62. Clemes SA, Parker RAA. Increasing our understanding of reactivity to pedometers in adults. Med Sci Sports Exerc. 2009;41: 674–680. doi: 10.1249/MSS.0b013e31818cae32 19204581
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis