#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Hierarchical classification of snowmelt episodes in the Pyrenees using seismic data


Autoři: Jordi Díaz aff001;  Pilar Sánchez-Pastor aff001;  Mario Ruiz aff001
Působiště autorů: Institute of Earth Sciences Jaume Almera, Consejo Superior de Investigaciones Científicas (ICTJA-CSIC), Barcelona, Spain aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223644

Souhrn

In recent years the analysis of the variations of seismic background signal recorded in temporal deployments of seismic stations near river channels has proved to be a useful tool to monitor river flow, even for modest discharges. The objective of this work is to apply seismic methods to the characterization of the snowmelt process in the Pyrenees, by developing an innovative approach based on the hierarchical classification of the daily spectrograms. The CANF seismic broad-band station, part of the Geodyn facility in the Laboratorio Subterráneo de Canfranc (LSC), is located in an underground tunnel in the Central Pyrenees, at about 400 m of the Aragón River channel, hence providing an excellent opportunity to explore the possibilities of the seismic monitoring of hydrological events at long term scale. We focus here on the identification and analysis of seismic signals generated by variations in river discharge due to snow melting during a period of six years (2011–2016). During snowmelt episodes, the temporal variations of the discharge at the drainage river result in seismic signals with specific characteristics allowing their discrimination from other sources of background vibrations. We have developed a methodology that use seismic data to monitor the time occurrence and properties of the thawing stages. The proposed method is based on the use of hierarchical clustering techniques to classify the daily seismic spectra according to their similarity. This allows us to discriminate up to four different types of episodes, evidencing changes in the duration and intensity of the melting process which in turn depends on variations in the meteorological and hydrological conditions. The analysis of six years of continuous seismic data from this innovative procedure shows that seismic data can be used to monitor snowmelt on long-term time scale and hence contribute to climate change studies.

Klíčová slova:

Flooding – Rain – Rivers – Hierarchical clustering – Melting – Surface water – Ponds – Seismic signal processing


Zdroje

1. Bertelli T. Osservazoni sui piccoli movimenti dei pendoli in relazione ad alucuni fenomeni meteorologiche. Boll Meteorol Osserv Coll Roma. 1872;9: 10.

2. Gutenberg B. Microseisms in North America. Bull Seismol Soc Am. 1931;21: 1–24.

3. Larose E, Carrière S, Voisin C, Bottelin P, Baillet L, Guéguen P, et al. Environmental seismology: What can we learn on earth surface processes with ambient noise? J Appl Geophys. 2015;116: 62–74. doi: 10.1016/j.jappgeo.2015.02.001

4. Aster RC, Mcnamara DE, Bromirski PD. Multi-decadal climate-induced variability in microseism. Seism Res Lett. 2008;79: 194–202.

5. Gerstoft P, Fehler MC, Sabra KG. When Katrina hit California. 2006;33: 2–7. doi: 10.1029/2006GL027270

6. Grob M, Maggi A, Stutzmann E. Observations of the seasonality of the Antarctic microseismic signal, and its association to sea ice variability. Geophys Res Lett. 2011;38: 1–6. doi: 10.1029/2011GL047525

7. Podolskiy EA, Walter F. Cryoseismology. Reviews of Geophysics. 2016. pp. 708–758. doi: 10.1002/2016RG000526

8. Aster RC, McNamara DE, Bromirski PD. Global trends in extremal microseism intensity. Geophys Res Lett. 2010;37: 1–5. doi: 10.1029/2010GL043472

9. Clements T, Denolle MA. Tracking Groundwater Levels Using the Ambient Seismic Field. Geophys Res Lett. 2018;45: 6459–6465. doi: 10.1029/2018GL077706

10. Govi M, Maraga F, Moia F. Seismic detectors for continuous bed load monitoring in a gravel stream. Hydrol Sci J. 1993;38: 123–132. doi: 10.1080/02626669309492650

11. Hürlimann M, Abancó C, Moya J. Debris-Flow Monitoring for the Set-Up of a Warning and Alarm System—Experiences from the Pyrenees -. Int J Eros Control Eng. 2016;9: 107–113. http://doi.org/10.13101/ijece.9.107

12. Arattano M, Abancó C, Coviello V, Hürlimann M. Processing the ground vibration signal produced by debris flows: The methods of amplitude and impulses compared. Comput Geosci. 2014;73: 17–27. doi: 10.1016/j.cageo.2014.08.005

13. Burtin A, Hovius N, McArdell BW, Turowski JM, Vergne J. Seismic constraints on dynamic links between geomorphic processes and routing of sediment in a steep mountain catchment. Earth Surf Dyn. 2014;2: 21–33. doi: 10.5194/esurf-2-21-2014

14. Burtin A, Bollinger L, Vergne J, Cattin R, Nábělek JL. Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics. J Geophys Res Solid Earth. 2008;113: 1–14. doi: 10.1029/2007JB005034

15. Hsu L, Finnegan NJ, Brodsky EE. A seismic signature of river bedload transport during storm events. Geophys Res Lett. 2011;38: 1–6. doi: 10.1029/2011GL047759

16. Schmandt B, Aster RC, Scherler D, Tsai VC, Karlstrom K. Multiple fluvial processes detected by riverside seismic and infrasound monitoring of a controlled flood in the Grand Canyon. Geophys Res Lett. 2013;40: 4858–4863. doi: 10.1002/grl.50953

17. Díaz J, Ruíz M, Crescentini L, Amoruso A, Gallart J. Seismic monitoring of an Alpine mountain river. J Geophys Res Solid Earth. 2014;119. doi: 10.1002/2014JB010955

18. Singh P, Huebl H, Weinmeister HW. Use of the recession characteristics of snowmelt hydrographs in the assessment of snow water storage in a basin. Hydrol Process. 2000;14: 91–101. doi: 10.1002/(SICI)1099-1085(200001)14:1<91::AID-HYP912>3.0.CO;2-E

19. Wessel P., Smith W.H.F., Scharroo R., Luis J., Wobb F. Generic Mapping Tools. Eos (Washington DC). 2013;94.

20. Everitt B. S., Landau S., Leese M and SD. Cluster Analysis. 5th ed. Chichester, UK: John Wiley & Sons; 2011.

21. Burtin A, Cattin R, Bollinger L, Vergne J, Steer P, Robert A, et al. Towards the hydrologic and bed load monitoring from high-frequency seismic noise in a braided river: The “torrent de St Pierre”, French Alps. J Hydrol. 2011;408: 43–53. doi: 10.1016/j.jhydrol.2011.07.014

22. Gimbert F, Tsai VC, Lamb MP. A physical model for seismic noise generation by turbulent flow in rivers. J Geophys Res F Earth Surf. 2014;119: 2209–2238. doi: 10.1002/2014JF003201

23. Roth DL, Finnegan NJ, Brodsky EE, Rickenmann D, Turowski JM, Badoux A, et al. Bed load transport and boundary roughness changes as competing causes of hysteresis in the relationship between river discharge and seismic amplitude recorded near a steep mountain stream. J Geophys Res Earth Surf. 2017;122: 1182–1200. doi: 10.1002/2016JF004062

24. Lai VH, Tsai VC, Lamb MP, Ulizio TP, Beer AR. The Seismic Signature of Debris Flows: Flow Mechanics and Early Warning at Montecito, California. Geophys Res Lett. 2018;45: 5528–5535. doi: 10.1029/2018GL077683

25. Huang CJ, Yin HY, Chen CY, Yeh CH, Wang CL. Ground vibrations produced by rock motions and debris flows. J Geophys Res Earth Surf. 2007;112: 1–20. doi: 10.1029/2005JF000437

26. Roeoesli C, Walter F, Ampuero J-P, Kissling E. Seismic moulin tremor. J Geophys Res Solid Earth. 2016;121: 5838–5858.

27. Van Overloop PJ, Miltenburg IJ, Bombois X, Clemmens AJ, Strand RJ, Van De Giesen NC, et al. Control Engineering Practice Identification of resonance waves in open water channels. Control Eng Pract. 2010;18: 863–872. doi: 10.1016/j.conengprac.2010.03.010


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#