Using isotemporal substitution to predict the effects of changing physical behaviour on older adults’ cardio-metabolic profiles
Autoři:
Declan J. Ryan aff001; Jorgen Antonin Wullems aff001; Georgina Kate Stebbings aff001; Christopher Ian Morse aff001; Claire Elizabeth Stewart aff004; Gladys Leopoldine Onambele-Pearson aff001
Působiště autorů:
Musculoskeletal Sciences & Sport Medicine (MSSM) Research Centre, Department of Sport & Exercise Science, Manchester Metropolitan University, Manchester, United Kingdom
aff001; Science, University of Northampton, Northampton, Northamptonshire, United Kingdom
aff002; Musculoskeletal Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Flanders, Belgium
aff003; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, Merseyside, United Kingdom
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224223
Souhrn
Background
It has been advocated that older adults should concomitantly spend less time in sedentary behaviour (SB), and engage in sufficient physical activity (PA), to reduce their risk of cardio-metabolic diseases. However, it is not clear what intensity of PA must be done to offset SB engagement.
Aim
Model how cardio-metabolic profiles could change if older adults replaced an hour per day (hr·day-1) of a physical behaviour intensity with 1 hr·day-1 of another physical behaviour of a different intensity.
Methods
Older adults (n = 93, 60–89 years old, 55% female) wore a thigh-mounted triaxial accelerometer for seven consecutive free-living days to estimate mean daily hourly engagement in SB, Standing, Light Intensity PA (LIPA), sporadic moderate to vigorous physical activity (sMVPA, bouts <10 continuous minutes), and 10-minute MVPA (10MVPA, bouts ≥10 continuous minutes. Fasting whole blood concentration of plasma glucose, triglyceride, total cholesterol, and glycated haemoglobin (%), along with serum concentration of lipoprotein lipase (LPL), interleukin-6 (IL-6), and procollagen III N-terminal propeptide (PIIINP) were measured.
Results
Isotemporal Substitution, with covariate adjustment, suggested that: total cholesterol concentration could theoretically decrease when 1 hr·day-1 of SB is replaced with Standing, when 1 hr.day-1 of LIPA is replaced with Standing, and when 1 hr·day-1 of sMVPA is replaced with Standing. Triglyceride concentration theoretically decreased when 1 hr·day-1 of SB, Standing, LIPA, or sMVPA is replaced with 10MVPA. Triglyceride concentration theoretically increases when 1 hr·day-1 of 10MVPA is replaced with SB, Standing, or LIPA. No associations with time reallocation appears to exist for LPL, HbA1c, IL-6, and PIIINP.
Conclusion
The type of physical behaviour being replaced could be crucial for total cholesterol maintenance. Engagement in 10MVPA could be necessary to improve triglyceride concentration.
Klíčová slova:
Lipids – Physical activity – Cholesterol – Cardiology – Elderly – Cardiovascular diseases – Accelerometers – Lipoproteins
Zdroje
1. National Health Service. Physical activity guidelines for adults. 2013 [cited 2014 16th October 2014]. Available from: http://www.nhs.uk/Livewell/fitness/Pages/physical-activity-guidelines-for-adults.aspx.
2. Nocon M, Hiemann T, Müller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. European Journal of Cardiovascular Prevention & Rehabilitation. 2008;15(3):239–46.
3. Townsend N, Bhatnagar P, Wilkins E, Wickramasinghe K, Rayner M. Cardiovascular disease statistics 2015. London: 2015.
4. Ryan DJ, Wullems JA, Stebbings GK, Morse CI, Stewart CE, Onambele-Pearson GL. Reliability and validity of the international physical activity questionnaire compared to calibrated accelerometer cut-off points in the quantification of sedentary behaviour and physical activity in older adults. PloS one. 2018;13(4):e0195712. doi: 10.1371/journal.pone.0195712 29672534
5. Craig R, Mindell J, Hirani V. Health Survey for England 2008. Volume 1: Physical Activity and Fitness. Health Survey for England. 2009;1:8–395.
6. Stamatakis E, Davis M, Stathi A, Hamer M. Associations between multiple indicators of objectively-measured and self-reported sedentary behaviour and cardiometabolic risk in older adults. Preventive medicine. 2012;54(1):82–7. doi: 10.1016/j.ypmed.2011.10.009 22057055
7. Pescatello LS, Murphy D, Costanzo D. Low-intensity physical activity benefits blood lipids and lipoproteins in older adults living at home. Age and Ageing. 2000;29(5):433–9. doi: 10.1093/ageing/29.5.433 11108416
8. Henson J, Yates T, Biddle SJ, Edwardson CL, Khunti K, Wilmot EG, et al. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia. 2013;56(5):1012–20. doi: 10.1007/s00125-013-2845-9 23456209
9. Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. American journal of epidemiology. 2009;170(4):519–27. doi: 10.1093/aje/kwp163 19584129
10. Grgic J, Dumuid D, Bengoechea EG, Shrestha N, Bauman A, Olds T, et al. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies. International Journal of Behavioral Nutrition and Physical Activity. 2018;15(1):69. doi: 10.1186/s12966-018-0691-3 30001713
11. Hamer M, Stamatakis E, Steptoe A. Effects of substituting sedentary time with physical activity on metabolic risk. Med Sci Sports Exerc. 2014;46(10):1946–50. doi: 10.1249/MSS.0000000000000317 24674977
12. Healy GN, Winkler EA, Owen N, Anuradha S, Dunstan DW. Replacing sitting time with standing or stepping: associations with cardio-metabolic risk biomarkers. European heart journal. 2015:ehv308.
13. Healy GN, Winkler EA, Brakenridge CL, Reeves MM, Eakin EG. Accelerometer-derived sedentary and physical activity time in overweight/obese adults with type 2 diabetes: cross-sectional associations with cardiometabolic biomarkers. PloS one. 2015;10(3):e0119140. doi: 10.1371/journal.pone.0119140 25775249
14. Ekblom-Bak E, Ekblom Ö, Bergström G, Börjesson M. Isotemporal substitution of sedentary time by physical activity of different intensities and bout lengths, and its associations with metabolic risk. European journal of preventive cardiology. 2016;23(9):967–74. doi: 10.1177/2047487315619734 26635358
15. Whitaker KM, Buman MP, Odegaard AO, Carpenter KC, Jacobs DR Jr, Sidney S, et al. Sedentary Behaviors and Cardiometabolic Risk: An Isotemporal Substitution Analysis. American journal of epidemiology. 2017;187(2):181–9.
16. Rosique-Esteban N, Díaz-López A, Martínez-González MA, Corella D, Goday A, Martínez JA, et al. Leisure-time physical activity, sedentary behaviors, sleep, and cardiometabolic risk factors at baseline in the PREDIMED-PLUS intervention trial: A cross-sectional analysis. PloS one. 2017;12(3):e0172253. doi: 10.1371/journal.pone.0172253 28273154
17. Yates T, Henson J, Edwardson C, Dunstan D, Bodicoat DH, Khunti K, et al. Objectively measured sedentary time and associations with insulin sensitivity: Importance of reallocating sedentary time to physical activity. Preventive medicine. 2015;76:79–83. doi: 10.1016/j.ypmed.2015.04.005 25900801
18. Buman M, Kurka J, Winkler E, Gardiner P, Hekler E, Healy G, et al. Estimated replacement effects of accelerometer-derived physical activity and self-reported sleep duration on chronic disease biomarkers. Journal of Science and Medicine in Sport. 2012;15:S76.
19. Ekblom-Bak E, Ekblom Ö, Bolam KA, Ekblom B, Bergström G, Börjesson M. SCAPIS pilot study: sitness, fitness and fatness—is sedentary time substitution by physical activity equally important for everyone’s markers of glucose regulation? Journal of Physical Activity and Health. 2016;13(7):697–703. doi: 10.1123/jpah.2015-0611 26900674
20. Dumuid D, Lewis L, Olds T, Maher C, Bondarenko C, Norton L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: a compositional isotemporal substitution analysis. Maturitas. 2018;110:104–10. doi: 10.1016/j.maturitas.2018.02.003 29563028
21. Ryan DJ W, J A, Stebbings G K, Morse C I, Stewart C E, Onambele-Pearson G L. Segregating the distinct effects of sedentary behaviour and physical activity on older adults’ cardiovascular structure and function: Part 2- Isotemporal substitution analysis Journal of physical activity & health. 2018:[In Press].
22. Henson J, Davies MJ, Bodicoat DH, Edwardson CL, Gill JM, Stensel DJ, et al. Breaking up prolonged sitting with standing or walking attenuates the postprandial metabolic response in post-menopausal women: a randomised acute study. 2016.
23. Duvivier BM, Schaper NC, Bremers MA, van Crombrugge G, Menheere PP, Kars M, et al. Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PloS one. 2013;8(2):e55542. doi: 10.1371/journal.pone.0055542 23418444
24. Fenton T. Regional gross disposable household income (GDHI): 1997 to 2015. In: Statistics OfN, editor. England: ONS; 2017.
25. Office for National Statistics. 2011 census analysis, local area analysis of qualifications across england and wales. In: ONS, editor. England2014.
26. Ryan DJ, Wullems J A, Stebbings G K, Morse C I, Stewart C E, Onambele-Pearson G L. Segregating the distinct effects of sedentary behaviour and physical activity on older adults’ cardiovascular structure and function: Part 1- Linear regression analysis approach. Journal of physical activity & health. 2018;17(7):499–509.
27. Wullems JA, Verschueren SM, Degens H, Morse CI, Onambélé GL. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults. PloS one. 2017;12(11):e0188215. doi: 10.1371/journal.pone.0188215 29155839
28. Coqueiro RdS, Santos MC, Neto JdSL, Queiroz BMd, Brügger NAJ, Barbosa AR. Validity of a portable glucose, total cholesterol, and triglycerides multi-analyzer in adults. Biological research for nursing. 2014;16(3):288–94. doi: 10.1177/1099800413495953 23871994
29. Phillips CG, Nwagbo Y, Ashton K. Analytical evaluation of POCT HbA1c instruments—The 3rd EFLM-UEMS Congress. Clin Chem Lab Med. 2014;52(11):eA205—aE379.
30. Mekary RA, Lucas M, Pan A, Okereke OI, Willett WC, Hu FB, et al. Isotemporal substitution analysis for physical activity, television watching, and risk of depression. American journal of epidemiology. 2013;178(3):474–83. doi: 10.1093/aje/kws590 23785112
31. Furberg CD, Adams HP, Applegate WB, Byington RP, Espeland MA, Hartwell T, et al. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation. 1994;90(4):1679–87. doi: 10.1161/01.cir.90.4.1679 7734010
32. Bakris GL, Fonseca V, Katholi RE, McGill JB, Messerli FH, Phillips RA, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. Jama. 2004;292(18):2227–36. doi: 10.1001/jama.292.18.2227 15536109
33. McIntyre RS, Soczynska JK, Konarski JZ, Kennedy SH. The effect of antidepressants on lipid homeostasis: a cardiac safety concern? Expert opinion on drug safety. 2006;5(4):523–37. doi: 10.1517/14740338.5.4.523 16774491
34. Tsuboi I, Tanaka H, Nakao M, Shichijo S, Itoh K. Nonsteroidal anti-inflammatory drugs differentially regulate cytokine production in human lymphocytes: Up-regulation of TNF, IFN-γ and IL-2, in contrast to down-regulation of IL-6 production. Cytokine. 1995;7(4):372–9. doi: 10.1006/cyto.1995.0047 8589268
35. Verschuren WM, Jacobs DR, Bloemberg BP, Kromhout D, Menotti A, Aravanis C, et al. Serum total cholesterol and long-term coronary heart disease mortality in different cultures: Twenty-five—year follow-up of the seven countries study. Jama. 1995;274(2):131–6. 7596000
36. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a metaanalysis of population-based prospective studies. Journal of cardiovascular risk. 1996;3(2):213–9. 8836866
37. Motoyama M, Sunami Y, Kinoshita F, Irie T, Sasaki J, Arakawa K, et al. The effects of long-term low intensity aerobic training and detraining on serum lipid and lipoprotein concentrations in elderly men and women. European journal of applied physiology and occupational physiology. 1995;70(2):126–31. doi: 10.1007/bf00361539 7768234
38. Petibois C, Cassaigne A, Gin H, Déléris Gr. Lipid profile disorders induced by long-term cessation of physical activity in previously highly endurance-trained subjects. The Journal of Clinical Endocrinology & Metabolism. 2004;89(7):3377–84.
39. Mora-Rodriguez R, Ortega J, Hamouti N, Fernandez-Elias V, Garcia-Prieto JC, Guadalupe-Grau A, et al. Time-course effects of aerobic interval training and detraining in patients with metabolic syndrome. Nutrition, Metabolism and Cardiovascular Diseases. 2014;24(7):792–8. doi: 10.1016/j.numecd.2014.01.011 24656853
40. Shirai K, Itoh Y, Sasaki H, Totsuka M, Murano T, Watanabe H, et al. The effect of insulin sensitizer, troglitazone, on lipoprotein lipase mass in preheparin serum. Diabetes research and clinical practice. 1999;46(1):35–41. doi: 10.1016/s0168-8227(99)00063-7 10580614
41. Watanabe H, Miyashita Y, Murano T, Hiroh Y, Itoh Y, Shirai K. Preheparin serum lipoprotein lipase mass level: the effects of age, gender, and types of hyperlipidemias. Atherosclerosis. 1999;145(1):45–50. doi: 10.1016/s0021-9150(99)00012-x 10428294
42. Hitsumoto T, Ohsawa H, Uchi T, Noike H, Kanai M, Yoshinuma M, et al. Preheparin serum lipoprotein lipase mass is negatively related to coronary atherosclerosis. Atherosclerosis. 2000;153(2):391–6. doi: 10.1016/s0021-9150(00)00413-5 11164428
43. Rip J, Nierman MC, Wareham NJ, Luben R, Bingham SA, Day NE, et al. Serum Lipoprotein Lipase Concentration and Risk for Future Coronary Artery Disease. Arteriosclerosis, thrombosis, and vascular biology. 2006;26(3):637–42. doi: 10.1161/01.ATV.0000201038.47949.56 16373616
44. Kantor MA, Cullinane EM, Sady SP, Herbert PN, Thompson PD. Exercise acutely increases high density lipoprotein-cholesterol and lipoprotein lipase activity in trained and untrained men. Metabolism. 1987;36(2):188–92. doi: 10.1016/0026-0495(87)90016-3 3807790
45. Hamilton MT, Etienne J, McClure WC, Pavey BS, Holloway AK. Role of local contractile activity and muscle fiber type on LPL regulation during exercise. American Journal of Physiology-Endocrinology And Metabolism. 1998;275(6):E1016–E22.
46. Nikkilä EA, Taskinen M-R, Rehunen S, Härkönen M. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism. 1978;27(11):1661–71. doi: 10.1016/0026-0495(78)90288-3 212665
47. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. Journal of lipid research. 1996;37(4):693–707. 8732771
48. Saito K, Sakurabayashi I, Manabe M. Serum lipoprotein lipase in healthy subjects: effects of gender and age, and relationships to lipid parameters. Annals of clinical biochemistry. 1998;35(6):733–8.
49. Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation. 1979;60(3):473–85. doi: 10.1161/01.cir.60.3.473 222498
50. Sarwar N, Gao P, Seshasai S, Gobin R, Kaptoge S, Di Angelantonio E, et al. Emerging Risk Factors Collaboration Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. doi: 10.1016/S0140-6736(10)60484-9 20609967
51. Bailey DP, Locke CD. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. Journal of Science and Medicine in Sport. 2014;18(3):294–8. doi: 10.1016/j.jsams.2014.03.008 24704421
52. Pulsford RM, Blackwell J, Hillsdon M, Kos K. Intermittent walking, but not standing, improves postprandial insulin and glucose relative to sustained sitting: a randomised cross-over study in inactive middle-aged men. Journal of Science and Medicine in Sport. 2016.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis