#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evaluation of protocols for rRNA depletion-based RNA sequencing of nanogram inputs of mammalian total RNA


Autoři: Simon Haile aff001;  Richard D. Corbett aff001;  Steve Bilobram aff001;  Karen Mungall aff001;  Bruno M. Grande aff001;  Heather Kirk aff001;  Pawan Pandoh aff001;  Tina MacLeod aff001;  Helen McDonald aff001;  Miruna Bala aff001;  Robin J. Coope aff001;  Richard A. Moore aff001;  Andrew J. Mungall aff001;  Yongjun Zhao aff001;  Ryan D. Morin aff001;  Steven J. Jones aff001;  Marco A. Marra aff001
Působiště autorů: Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada aff001;  Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada aff002;  Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224578

Souhrn

Next generation RNA-sequencing (RNA-seq) is a flexible approach that can be applied to a range of applications including global quantification of transcript expression, the characterization of RNA structure such as splicing patterns and profiling of expressed mutations. Many RNA-seq protocols require up to microgram levels of total RNA input amounts to generate high quality data, and thus remain impractical for the limited starting material amounts typically obtained from rare cell populations, such as those from early developmental stages or from laser micro-dissected clinical samples. Here, we present an assessment of the contemporary ribosomal RNA depletion-based protocols, and identify those that are suitable for inputs as low as 1–10 ng of intact total RNA and 100–500 ng of partially degraded RNA from formalin-fixed paraffin-embedded tissues.

Klíčová slova:

Sequence alignment – Messenger RNA – RNA extraction – Mitochondria – RNA sequencing – Ribosomal RNA – Ribonucleases – cDNA libraries


Zdroje

1. Lucas MC, Jacobson JW and Giles NH. Characterization and in vitro translation of polyadenylated messenger ribonucleic acid from Neurospora crassa. J. Bacteriol. 1977;130, 1192–1198. 140861

2. Sturani E, Costantini MG, Martegani E, and Alberghina L. Level and turnover of polyadenylate-containing ribonucleic acid in Neurospora crassa in different steady states of growth. Eur. J. Biochem. 1979; 99, 1–7. doi: 10.1111/j.1432-1033.1979.tb13224.x 158528

3. Aviv H and Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid–cellulose. Proc. Natl. Acad. Sci. U.S.A. 1972;69, 1408–1412. doi: 10.1073/pnas.69.6.1408 4504350

4. Kuai L, Fang F, Butler JS, and Sherman F. Polyadenylation of rRNA in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2004;101, 8581–8586. doi: 10.1073/pnas.0402888101 15173578

5. Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA, Berlin AM, et al. Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat. Methods 2013;10, 623–629. doi: 10.1038/nmeth.2483 23685885

6. Morlan JD, Qu K and Sinicropi DV. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PLoS One 2012;77, e42882.

7. Hrdlickova R, Toloue M and Tian B. RNA-Seq methods for transcriptome analysis. WIREs RNA. 2017; 8, e1364.

8. Archer SK, Shirokikh NE and Preiss T. Selective and flexible depletion of problematic sequences from RNA-seq libraries at the cDNA stage. BMC Genomics. 2014;15(1), 401.

9. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN and Perou CM. Comparison of RNA-Seq by poly (a) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics. 2014;15, 419. doi: 10.1186/1471-2164-15-419 24888378

10. Gallego Romero I, Pai AA, Tung J and Gilad Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol. 2014;12(1), 42.

11. Sultan M, Amstislavskiy V, Risch T, Schuette M, Dökel S, Ralser M, et al. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics. 2014;15(1), 1–13.

12. Cieslik M, Chugh R, Wu Y-M, Wu M, Brennan C, Lonigro R, et al. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res. 2015;25(9), 1372–1381. doi: 10.1101/gr.189621.115 26253700

13. Li P, Conley A, Zhang H and Kim HL. Whole-Transcriptome profiling of formalin-fixed, paraffin-embedded renal cell carcinoma by RNA-seq. BMC Genomics. 2014;15(1), 1–9.

14. Shanker S, Paulson A, Edenberg HJ, Peak A, Perera A, Alekseyev YO, et al. Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input amounts of total RNA. J Biomol Tech. 2015;26(1), 4–18. doi: 10.7171/jbt.15-2601-001 25649271

15. Schuierer S, Carbone W, Knehr J, Petitjean V, Fernandez A, Sultan M, et al. Comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC Genomics. 2017;18, 442. doi: 10.1186/s12864-017-3827-y 28583074

16. Haile S, Pandoh P, McDonald H, Corbett RD, Tsao P, Kirk H, et al. Automated high throughput nucleic acid purification from formalin-fixed paraffin-embedded tissue samples for next generation sequence analysis. PLoS One. 2017;12(6), e0178706. doi: 10.1371/journal.pone.0178706 28570594

17. Grande BM, Gerhard DS, Jiang A, Griner NB, Abramson JS, Alexander TB, et al. Genome-wide discovery of somatic coding and non-coding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood. 2019;133, 1313–1324. doi: 10.1182/blood-2018-09-871418 30617194

18. Haile S, Corbett RD, MacLeod T, Bilobram B, Smailus D, Tsao P, et al. Increasing quality, throughput and speed of sample preparation for strand-specific messenger RNA sequencing. BMC Genomics 2017;18, 515. doi: 10.1186/s12864-017-3900-6 28679365

19. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint. 2013; arXiv:1303.3997.

20. Butterfield YS, Kreitzman M, Thiessen N, Corbett RD, Li Y, Pang J, et al. JAGuaR: Junction Alignments to Genome for RNA-Seq Reads. PLoS One. 2014 9(7), e102398. doi: 10.1371/journal.pone.0102398 25062255

21. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16), 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943

22. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ and Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;12, 2032–2034.

23. MAQC Consortium, Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006;9, 1151–61.

24. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo assembly and analysis of RNA-seq data. Nat Methods. 2010;11, 909–12.

25. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19(6), 1117–23. doi: 10.1101/gr.089532.108 19251739

26. Iyer MK, Chinnaiyan AM and Maher CA. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics. 2011; 27(20), 2903–2904. doi: 10.1093/bioinformatics/btr467 21840877

27. McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS computational biology. 2011;7(5), e1001138. doi: 10.1371/journal.pcbi.1001138 21625565

28. Reisle C, Mungall KL, Choo C, Paulino D, Bleile DW, Muhammadzadeh A, et al. MAVIS: merging, annotation, validation, and illustration of structural variants. Bioinformatics. 2018; 35(3), 515–517.

29. External RNA Controls Consortium. Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics. 2005;6, 150. doi: 10.1186/1471-2164-6-150 16266432

30. External RNA Controls Consortium. The External RNA Controls Consortium: a progress report. Nat. Methods. 2005;2, 731–734. doi: 10.1038/nmeth1005-731 16179916

31. Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C, Macaulay IC, et al. Power Analysis of Single Cell RNA-Sequencing Experiments. Nat. Methods. 2017,14, 38–387.

32. Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S, et al. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One. 2014; 9(5), e98187. doi: 10.1371/journal.pone.0098187 24878701

33. Sakarya O, Breu H, Radovich M, Chen Y, Wang YN, Barbacioru C, et al. RNA-Seq Mapping and Detection of Gene Fusions with a Suffix Array Algorithm. PLoS Comput Biol. 2012; 8(4), e1002464. doi: 10.1371/journal.pcbi.1002464 22496636

34. Scolnick JA, Dimon M, Wang IC, Huelga SC and Amorese DA. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples. PLoS One. 2015; 10(7), e0128916. doi: 10.1371/journal.pone.0128916 26132974


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#