#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Supra-threshold perception and neural representation of tones presented in noise in conditions of masking release


Autoři: Katharina Egger aff001;  Torsten Dau aff001;  Bastian Epp aff001
Působiště autorů: Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222804

Souhrn

The neural representation and perceptual salience of tonal signals presented in different noise maskers were investigated. The properties of the maskers and signals were varied such that they produced different amounts of either monaural masking release, binaural masking release, or a combination of both. The signals were then presented at different levels above their corresponding masked thresholds and auditory evoked potentials (AEPs) were measured. It was found that, independent of the masking condition, the amplitude of the P2 component of the AEP was similar for the same stimulus levels above masked threshold, suggesting that both monaural and binaural effects of masking release were represented at the level of the auditory pathway where P2 is generated. The perceptual salience of the signal was evaluated at equal levels above masked threshold using a rating task. In contrast to the electrophysiological findings, the subjective ratings of the perceptual signal salience were less consistent with the signal level above masked threshold and varied strongly across listeners and masking conditions. Overall, the results from the present study suggest that the P2 amplitude of the AEP represents an objective indicator of the audibility of a target signal in the presence of complex acoustic maskers.

Klíčová slova:

Sensory perception – Electrophysiology – Acoustic signals – Signal to noise ratio – Evoked potentials – Speech signal processing – Signal filtering – Signal bandwidth


Zdroje

1. Fletcher H. Auditory Patterns. Rev Mod Phys. 1940; 12(1): 47–65.

2. Verhey JL, Pressnitzer D and Winter IM. The psychophysics and physiology of comodulation masking release. Experimental Brain Research. 2003;153(4):405–17. doi: 10.1007/s00221-003-1607-1 13680049

3. Carlyon RP, Buus S and Florentine M. Comodulation masking release for three types of modulator as a function of modulation rate. Hearing Research 1989; 42(1):37–45. doi: 10.1016/0378-5955(89)90116-0 2584158

4. Hall JW, Haggard MP and Fernandes M. A., Detection in noise by spectro-temporal pattern analysis, The Journal of the Acoustical Society of America 1984; 76(1):50–56. doi: 10.1121/1.391005 6747111

5. Hall JW, Grose JH and Haggard MP. Effects of flanking band proximity, number, and modulation pattern on comodulation masking release. The Journal of the Acoustical Society of America 1990;87(1):269–283. doi: 10.1121/1.399294 2299038

6. Schooneveldt GP and Moore BCJ. Comodulation masking release (CMR): Effects of signal frequency, flanking‐band frequency, masker bandwidth, flanking-band level, and monotic versus dichotic presentation of the flanking band. The Journal of the Acoustical Society of America 1987; 82(6):1944–1956. doi: 10.1121/1.395639 3429732

7. Jeffress LA, Blodgett HC, Sandel TT and Wood CLI. Masking of tonal signals. The Journal of the Acoustical Society of America 1956; 28(3): 416–426.

8. van de Par S and Kohlrausch A. Dependence of binaural masking level differences on center frequency, masker bandwidth, and interaural parameters. The Journal of the Acoustical Society of America 1999;106(4):1940–7.

9. Hirsh I and Pollack I. The role of interaural phase in loudness. The Journal of the Acoustical Society of America 1948;20(6):761–766.

10. Cohen MF and Schubert ED. Comodulation masking release and the masking-level difference. The Journal of the Acoustical Society of America 1991; 89(6): 3007–3008. doi: 10.1121/1.400739 1918636

11. Epp B and Verhey JL. Superposition of masking releases. J Comput Neurosci 2009; 26(3):393–407. doi: 10.1007/s10827-008-0118-2 19039657

12. Epp B and Verhey JL. Combination of masking releases for different center frequencies and masker amplitude statistics. The Journal of the Acoustical Society of America 2009; 126(5): 2479–89. doi: 10.1121/1.3205404 19894828

13. Hall JW, Cokely JA and Grose JH. Combined monaural and binaural masking release. The Journal of the Acoustical Society of America 1988; 83:1839–1845. doi: 10.1121/1.396519 3403799

14. Hall JW, Buss E and Grose JH. Binaural comodulation masking release: Effects of masker interaural correlation. The Journal of the Acoustical Society of America 2006;120(6):3878–3888. doi: 10.1121/1.2357989 17225415

15. Hall JW, Buss E and Grose JH. Exploring the additivity of binaural and monaural masking release. The Journal of the Acoustical Society of America 2011; 129(4): 2080–7. doi: 10.1121/1.3562563 21476663

16. Festen JM. Contributions of comodulation masking release and temporal resolution to the speech-reception threshold masked by an interfering voice. The Journal of the Acoustical Society of America 1993; 94:1295–1300. doi: 10.1121/1.408156 8408970

17. Grose JH and Hall JW. Comodulation masking release for speech stimuli. The Journal of the Acoustical Society of America 1992; 91: 1042–1050. doi: 10.1121/1.402630 1556306

18. Kwon BJ. Comodulation masking release in consonant recognition. The Journal of the Acoustical Society of America 2002; 112(2): 634–41. doi: 10.1121/1.1490351 12186043

19. Buss E, Grose JH and Hall JW. Frequency discrimination under conditions of comodulation masking release (L). The Journal of the Acoustical Society of America 2012;134(4):2557–2560.

20. Buss E and Hall JW. Effects of masker envelope coherence on intensity discrimination. The Journal of the Acoustical Society of America 2009;126(5):2467–2478. doi: 10.1121/1.3212944 19894827

21. Soderquist RD and Shilling DR. Loudness and the binaural masking level difference. Bull. Psychon. Soc. 1990; 28: 553–555.

22. Townsend TH and Goldstein DR. Suprathreshold binaural unmasking. The Journal of the Acoustical Society of America 1972; 621–624.

23. Verhey JL and Heise SJ. Suprathreshold Perception of Tonal Components in Noise Under Conditions of Masking Release. Acta Acustica united with Acustica 2012; 1–24.

24. Verhey JL, Heeren W. Categorical scaling of partial loudness in a condition of masking release. The Journal of the Acoustical Society of America, 2015; 138:904–915 doi: 10.1121/1.4927415 26328706

25. Androulidakis AG and Jones SJ. Detection of signals in modulated and unmodulated noise observed using auditory evoked potentials. Clin Neurophysiol 2006;117(8): 1783–93. doi: 10.1016/j.clinph.2006.04.011 16793334

26. Rupp A, Las L, Nelken I. Neuromagnetic representation of comodulation masking release in the human auditory cortex. In: Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S and Verhey JL, editors. Hearing–From Sensory Processing to Perception. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. pp. 125–132.

27. Ernst SMA, Verhey JL and Uppenkamp S., Spatial dissociation of changes of level and signal-to-noise ratio in auditory cortex for tones in noise. NeuroImage 2008;43(2): 321–8. doi: 10.1016/j.neuroimage.2008.07.046 18722535

28. Ernst SMA, Uppenkamp S. and Verhey JL. Cortical representation of release from auditory masking. NeuroImage 2010; 49(1):835–42. doi: 10.1016/j.neuroimage.2009.07.014 19616635

29. Fowler C and Mikami C. Phase effects on the middle and late auditory evoked potentials. Journal of the American Academy of America 1996; 7:23–30.

30. Ishida IM and Stapells DR. Does the 40-Hz auditory steady-state response show the binaural masking level difference?, Ear and hearing 2009;30(6): 713–5. doi: 10.1097/AUD.0b013e3181b61cc8 19701090

31. Wong WYS and Stapells DR. Brain stem and cortical mechanisms underlying the binaural masking level difference in humans: an auditory steady-state response study. Ear and hearing 2004; 25(1):57–67. doi: 10.1097/01.AUD.0000111257.11898.64 14770018

32. Ross B, Fujioka T, Tremblay KL and Picton TW. Aging in binaural hearing begins in mid-life: Evidence from cortical auditory-evoked responses to changes in interaural phase. J Neurosci 2007; 27(42): 11172–8. doi: 10.1523/JNEUROSCI.1813-07.2007 17942712

33. Sasaki T, Kawase T, Nakasato N, Kanno A, Ogura M, Tominaga T and Kobayashi T. Neuromagnetic evaluation of binaural unmasking. NeuroImage 2005; 25(3): 684–9. doi: 10.1016/j.neuroimage.2004.11.030 15808969

34. Wack DS, Cox JL, Schirda CV, Magnano CR, Sussman JE, Henderson D and Burkard RF. Functional Anatomy of the Masking Level Difference, an fMRI Study. PLoS ONE 2012;7(7): e41263. doi: 10.1371/journal.pone.0041263 22848453

35. Billings CJ, McMillan GP, Penman TM and Gille SM. Predicting perception in noise using cortical auditory evoked potentials. Journal of the Association for Research in Otolaryngology 2013; 14:891–903. doi: 10.1007/s10162-013-0415-y 24030818

36. Epp B, Yasin I and Verhey JL. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials. Hearing research 2013; 306:21–8. doi: 10.1016/j.heares.2013.08.013 24047593

37. Glasberg BR and Moore BCJ. Derivation of auditory filter shapes from notched-noise data. Hear Res 1990; 47(1–2):103–38. doi: 10.1016/0378-5955(90)90170-t 2228789

38. Brainard DH. The Psychophysics Toolbox, Spatial Vision, 1997. 9176952

39. Kleiner DM, Brainard D, Pelli D, Ingling A, Murray R et al. What’s new in Psychtoolbox-3. Perception 2007;36(14):1.

40. Jasper HH. The ten twenty electrode system of the international federation. Electroen Clin Neuro 1957; 10:append 371–375.

41. Sharbrough F, Chatrian G, Lesser R, Lüders H, Nuwer M and Picton TW. American Electroencephalographic Society guidelines for standard electrode position nomenclature. J Clin Neurophysiol 1991; 8(2): 200–202. 2050819

42. Luck J. An Introduction to the Event-Related Potential Technique, 2nd edition MIT press; 2014.

43. Levitt H. Transformed up‐down methods in psychoacoustics. The Journal of the Acoustical society of America 1971; II:467–477.

44. Guski R. Psychological Methods for Evaluating Sound Quality and Assessing Acoustic Information. Acta Acustica united with Acustica 1997; 38(5):765–774.

45. Riedel H, Granzow M and Kollmeier B. Single-sweep-based methods to improve the quality of auditory brain stem responses Part II: Averaging methods. Zeitschrift für Audiologie / Audiological Acoustics 2001; 40(2): 62–85.

46. Hoke M, Ross B, Wickersberg R and Lütkenhöner B. Weighted averaging—theory and application to electric response audiometry. Electroen Clin Neuro 1984; 57:484–9.

47. Yonovitz A, Thompson CL and Lozar J. Masking level differences: auditory evoked responses with homophasic and antiphasic signal and noise. Journal of speech and hearing research 1997; 22(2): 403–11.

48. Billings CJ C. J., Tremblay KL K. L., Stecker GC G. C. and Tolin WM W. M.., Human evoked cortical activity to signal-to-noise ratio and absolute signal level. Hearing research 2009;254(1–2):15–24. doi: 10.1016/j.heares.2009.04.002 19364526

49. Hansen H, Verhey JL and Weber R. The Magnitude of Tonal Content. A Review. Acta Acustica united with Acustica 2011; 97(3):355–363.

50. Rupp A, Sieroka N, Gutschalk A and Dau T. Representation of Auditory-Filter Phase Characteristics in the Cortex of Human Listeners. Journal of Neurophysiology 2008; 99(3):1152–1162. doi: 10.1152/jn.00778.2007 18184891

51. David H. The Method of Paired Comparisons. New York: Oxford University Press; 1988.

52. Ellermeier W, Mader M and Daniel P. Scaling the Unpleasantness of Sounds According to the BTL Model: Ratio-Scale Representation and Psychoacoustical Analysis. Acta Acustica 2004;90(1):101–107

53. Egger K, Epp B. Raw data: Supra-threshold perception and neural representation of tones presented in noise in conditions of masking release; 2019 [cited 15 March 2019]. Database: Zenodo [Internet]. Available from: https://doi.org/10.5281/zenodo.2594667


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#