Distance to large rivers affects fish diversity patterns in highly dynamic streams of Central Amazonia
Autoři:
Lis F. Stegmann aff001; Rafael P. Leitão aff002; Jansen Zuanon aff003; William E. Magnusson aff003
Působiště autorů:
Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
aff001; Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
aff002; Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223880
Souhrn
Longitudinal-zonation hypotheses generally predict gradual changes in fish composition from upstream to downstream due to changes in habitat conditions, but largely disregard downstream effects on upstream segments. Floodplains of large rivers represent areas of high connectivity during flood periods and can act as stable refuges in dry seasons, which may attenuate deterministic constraints imposed by local conditions on fish assemblages in surrounding habitats. In this study, we investigated the effects of proximity to large rivers on taxonomic- and functional-diversity patterns of stream-fish assemblages in an extensive region of Central Amazonia. We sampled 31 headwater-stream reaches in nine catchments in the Purus and Madeira Rivers interfluve between December 2014 and March 2015. Ninety seven fish species from seven orders and 19 families were captured. The results indicate that distance to large rivers is more important than distance among sites and local conditions in explaining functional and taxonomic diversity of stream-fish assemblages at large spatial scales. We also found a decrease in taxonomic and functional richness towards headwaters, mainly related to the loss of benthic and sedentary species along the distance gradient. These species may be favored by the proximity to refuge areas and high resource availability near the floodplain. In contrast, upstream assemblages were mainly occupied by small-sized, nektonic species with higher dispersal capacity, highly dependent of allochthonous resources. Downstream effects could be detected for many kilometers upstream in hydrographic catchments and this reinforces the crucial role of connectivity between fluvial habitats in maintenance of stream-fish diversity patterns in the region.
Klíčová slova:
Principal component analysis – Taxonomy – Species diversity – Habitats – Flooding – Animal migration – Rivers – Freshwater fish
Zdroje
1. Schlosser IJ. Environmental variation, life history attributes, and community structure in stream fishes: Implications for environmental management and assessment. Environ Manage. 1990; 14(5): 621–8. doi: 10.1007/BF02394713
2. Profiles Huet M. and biology of western european streams as related to fish management. Trans Am Fish Soc. 1959; 88: 155–163. doi: 10.1577/1548-8659(1959)88[155:pabowe]2.0.co;2
3. Vannote RL, Minshall WG, Cummins KW, Sedell JR, Suching CE. The river continuum concept ‘. Can J Fish Aquat Sci. 1980; (1): 130–7. doi: 10.1139/f80-017#.XYKHWC5KjIU
4. Schlosser IJ. Fish community structure and function along two habitat gradients in a headwater stream. Ecol Monogr. 1982; 52(4): 395–414. doi: 10.2307/2937352
5. Welcomme RL, Winemiller KO, Cowx IG. Fish environmental guilds as a tool for assessment of ecological condition of rivers. River Res Appl. 2006; 22(3): 377–96. doi: 10.1002/rra.914
6. Gorman OT. Assemblage organization of stream fishes: The effect of rivers on adventitious streams. Am Nat. 1989; 128(4): 611–6. doi: 10.1086/284592
7. Osborne LL, Wiley MJ. Influence of tributary spatial position on the structure of warmwater fish communities. Can J Fish Aquat Sci. 1992; 49(4): 671–81. doi: 10.1139/f92-076
8. Montgomery DR. Process domains and the river continuum. J Am Water Resour Assoc. 1999; 35(2): 397–410. doi: 10.1111/j.1752-1688.1999.tb03598.x
9. Altermatt F, Fronhofer E. Dispersal in dendritic networks: Ecological consequences on the spatial distribution of population densities. Freshw Biol. 2017; 63: 22–32. doi: 10.1111/fwb.12951
10. Smith LC, Powell CR. The summer fish communities of Brier Creek, Marshall County, Oklahoma. Am Museum Novit. 1971; 2458. Available from: http://digitallibrary.amnh.org/handle/2246/2666.
11. Perry JA, Schaeffer DJ. The longitudinal distribution of riverine benthos: A river discontinuum? Hydrobiologia. 1987; 148: 257–268. doi: 10.1007/BF00017528
12. Schlosser IJ. Fish Ecology: A Perspective landscape affect fish populations and their community dynamics. Bioscience. 1991; 41(10): 704–12. doi: 10.2307/1311765
13. Schlosser IJ. Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia. 1995; 303: 71–81. doi: 10.1007/BF00034045
14. Brown BL, Swan CM. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J Anim Ecol. 2010; 79(3): 571–80. doi: 10.1111/j.1365-2656.2010.01668.x 20180874
15. Benda L, Poff NL, MIller D, Dunne T, Reeves G, Pess G, et al. The network dynamics hypothesis: How channel networks structure riverine habitats. Bioscience. 2004; 54(5): 413. doi: 10.1641/0006-3568(2004)054[0413:tndhhc]2.0.co;2
16. Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw Biol. 2015; 60(5): 845–69. doi: 10.1111/fwb.12533
17. Goulding M, Carvalho M, Ferreira EJG. Rio Negro, rich life in poor water. Hague, Netherlands: SPB Academic Publishing; 1988. 200p.
18. Dala-Corte RB, Becker FG, Melo AS. The importance of metacommunity processes for long-term turnover of riflle-dwelling fish assemblages depends on spatial position within dendritic network. Can J Fish Aquat Sci. 2016; 74(1): 101–15. doi: 10.1139/cjfas-2016-0049#.XYKhoS5KjIU
19. Schaefer J, Kerfoot JR. Fish assemblage dynamics in an adventitious stream: A landscape perspective. Am Midl Nat. 2004; 151(1): 134–145. doi: 10.1674/0003-0031(2004)151[0134:FADIAA]2.0.CO;2
20. Silva F, Ferreira EJG, Deus CP. Structure and dynamics of stream fish communities in the flood zone of the lower Purus River, Amazonas State, Brazil. Hydrobiologia. 2010; (651): 279–89. doi: 10.1007/s10750-010-0307-7
21. Espírito-Santo MVH, Zuanon J. Temporary pools provide stability to fish assemblages in Amazon headwater streams. Ecol Freshw Fish. 2016; 26(3): 475–83. doi: 10.1111/eff.12292
22. Couto TBA, Zuanon J, Olden JD, Ferraz G. Longitudinal variability in lateral hydrologic connectivity shapes fish occurrence in temporary floodplain ponds. Can J Fish Aquat Sci. 2018; 75(2): 319–328. doi: 10.1139/cjfas-2016-0388#.XYKqOC5KjIU
23. Santos LL, Benone NL, Soares BE, Barthem RB, Montag LFA. Trait–environment relationships in Amazon stream fish assemblages. Ecol Freshw Fish. 2019; 28(3): 424–433. doi: 10.1111/eff.12465
24. Jackson DA, Peres-neto PR, Olden JD. What controls who is where in freshwater fish communities—the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci. 2000; 58(1): 157–70. doi: 10.1139/cjfas-58-1-157
25. Datry T, Melo AS, Moya N, Zubieta J, De la Barra E, Oberdorff T. Metacommunity patterns across three Neotropical catchments with varying environmental harshness. Freshw Biol. 2016; 61(3): 277–92. doi: /10.1111/fwb.12702
26. Leitão R, Zuanon J, Villéger S, Williams S, Baraloto C, Fortunel C, et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc R Soc B Biol Sci. 2016; 283: 20160084. doi: 10.1098/rspb.2016.0084 27053754
27. Leitão R, Zuanon J, Mouillot D, Leal C, Hughes R, Kaufmann P, et al. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography. 2018; 41(1): 219–32. doi: 10.1111/ecog.02845 29910537
28. Lennon JJ, Koleff P, Greenwood JJ., Gaston KJ. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J Anim Ecol. 2001; 70(6): 966–979. doi: 10.1046/j.0021-8790.2001.00563.x
29. Legendre P. Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr. 2014; 23(11): 1324–34. doi: 10.1111/geb.12207
30. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes F, et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett. 2004; 7(7): 600–13. doi: 10.1111/j.1461-0248.2004.00608.x
31. Hubbell S. The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press; 2001.
32. Myers J, Chase J, Jiménez I, Jørgensen P, Araujo-Murakami, Paniagua-Zambrana A, N Seidel R. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol Lett. 2013; 16(2): 151–157. doi: 10.1111/ele.12021 23113954
33. Cilleros K, Allard L, Vigouroux R, Brosse S. Disentangling spatial and environmental determinants of fish species richness and assemblage structure in Neotropical rainforest streams. Freshw Biol. 2017; 62(10): 1707–20. doi: 10.1111/fwb.12981
34. Cilleros K, Allard L, Grenouillet G, Brosse S. Taxonomic and functional diversity patterns reveal different processes shaping European and Amazonian stream fish assemblages. J Biogeogr. 2016; 43(9): 1832–43. doi: 10.1111/jbi.12839
35. Sombroek W. Amazon land forms and soils in relation to biological diversity. Acta Amazonica. 2000; 30(1): 81–100. doi: 10.1590/1809-43922000301100
36. Junk WJ. General aspects of floodplain ecology with special reference to Amazonian floodplains. Ecological Studies. 1997; 126: 3–20. doi: 10.1007/978-3-662-03416-3_1
37. Mendonça FP, Magnusson WE, Zuanon J. Relationships between habitat characteristics and fish assemblages in small streams of Central Amazonia. Copeia. 2005; 4(4): 751–64. doi: 10.1643/0045-8511(2005)005[0751:RBHCAF]2.0.CO;2
38. Magnusson W, Braga-Neto R, Pezzini F, Baccaro F, Bergallo H, Penha J, et al. Biodiversity and integrated environmental monitoring. Manaus: Attema; 2013.
39. Buckup P. Review of the characidiin fishes (Teleostei: Characiformes), with descriptions of four new genera and ten new species. Ichthyol Explor Freshwaters. 1993; 4(2): 97–154.
40. Géry J. Characoids of the world. Neptune: TFH Publications; 1977.
41. Queiroz L, Torrente-Vilara G, Ohara W, Pires T, Zuanon J, Doria C. Peixes do rio Madeira. 1st ed. São Paulo: Dialeto Latin American Documentary; 2013.
42. Zuanon J, Mendonça F, Espírito-Santo H, Galuch A, Akama A. Guia de peixes da Reserva Ducke—Amazônia Central. 1st ed. Manaus: Editora INPA; 2015.
43. Maire E, Grenouillet G, Brosse S, Villéger S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. 2015; 24(6): 728–40. doi: 10.1111/geb.12299
44. Villéger S, Mason N, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 2008; 89(8): 2290–301. doi: 10.1890/07-1206.1 18724739
45. Laliberté E, Legendre P. A distance-based framework for measuring functional diversity from multiple traits. Ecology. 2010; 91(1): 299–305. doi: 10.1890/08-2244.1 20380219
46. Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2013.
47. Podani J, Schmera D. A new conceptual and methodological framework for exploring and explaining pattern in presence—absence data. Oikos. 2011; 120(11): 1625–38. doi: 10.1111/j.1600-0706.2011.19451.x
48. Baselga A. Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr. 2010; 19(1): 134–43. doi: 10.1111/j.1466-8238.2009.00490.x
49. Baselga A, Orme D, Villéger S, Bortoli J, Leprieur F, Logez M, et al. Partitioning beta diversity into turnover and nestedness: ‘betapart’ package for R. 2018. Available from: https://cran.r-project.org/web/packages/betapart/betapart.pdf.
50. Venticinque E, Forsberg B, Barthem R, Petry P, Hess L, Mercado A, et al. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon. Earth Syst Sci Data. 2016; 8(2): 651–61. doi: 10.5194/essd-8-651-2016
51. Fortin M, Payette S. How to test the significance of the relation between spatially autocorrelated data at the landscape scale: A case study using fire and forest maps. Ecoscience. 2002; 9(2): 213–8. doi: 10.1080/11956860.2002.11682707
52. Marco AR, William M, Lewis J. Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecol Monogr. 1997; 67(1): 109–28. doi: 10.1890/0012-9615%281997%29067%5B0109%3ASOFAAE%5D2.0.CO%3B2
53. Jackson DA, Peres-Neto PR, Olden JD. What controls who is where in freshwater fish communities—the roles of biotic, abiotic, and spatial factors. Can. J. Aquat. Sci. 2001; 58(1): 157–170. doi: 10.1139/cjfas-58-1-157
54. Dunning JB, Danielson BJ, Pulliam HR. Ecological processes that affect populations in complex landscapes. Oikos. 1992; 65(1): 169–75. doi: 10.2307/3544901
55. Ferreira FC, Souza UP, Cetra M, Petrere M. Rhithronic and potamonic fishes coexist in wadeable streams under distinct metacommunity processes. Ecol Freshw Fish. 2019; 28(1): 85–96. doi: 10.1111/eff.12433
56. Weitzman S, Vari R. Miniaturization in South American freshwater fishes; an overview and discussion. Proc Biol Soc Wash. 1988; 101(2): 444–65. Available from: https://repository.si.edu/handle/10088/901.
57. Schlosser IJ. A conceptual framework for fish communities in small warmwater streams. In: Matthews WJ, Heins DC, editors. Community and evolutionary ecology of North American stream fishes. Norman, Oklahoma: University of Oklahoma Press; 1991. pp. 17–24.
58. Datry T, Melo AS, Moya N, Zubieta J, De la Barra E, Oberdorff T. Metacommunity patterns across three Neotropical catchments with varying environmental harshness. Freshw Biol. 2016; 61(3): 277–292. doi: 10.1111/fwb.12702
59. Datry T, Moya N, Zubieta J, Oberdorff T. Determinants of local and regionalcommunities in intermittent and perennial headwaters of the Bolivian Amazon. Freshw Biol. 2016; 61(8): 1335–49. doi: 10.1111/fwb.12706
60. Fearnside PM, Graça PMLA. BR-319: Brazil’s Manaus-Porto Velho highway and the potential impact of linking the arc of deforestation to central Amazonia. Environ Manage. 2006; 38(5): 705–716. doi: 10.1007/s00267-005-0295-y 16990982
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis