Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity
Autoři:
Ping Chen aff001; Hao Zheng aff001; Hui Xu aff001; Yan-xu Gao aff001; Xiao-qing Ding aff001; Mei-ling Ma aff001
Působiště autorů:
School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223900
Souhrn
This paper presents an experimental study on the applicability of microbial induced carbonate precipitation (MICP) to treat municipal solid waste incineration (MSWI) fly ash with high alkalinity and heavy metal toxicity. The experiments were carried out on fly ashes A and B produced from incineration processes of mechanical grate furnace and circulating fluidized bed, respectively. The results showed that both types of fly ashes contained high CaO content, which could supply sufficient endogenous Ca for MICP treatment. Moreover, S. pasteurii can survive from high alkalinity and heavy metal toxicity of fly ash solution. Further, the unconfined compressive strength (UCS) of MICP treated fly ashes A and B reached 0.385MPa and 0.709 MPa, respectively. The MICP treatment also resulted in a reduction in the leaching toxicity of heavy metals, especially for Cu, Pb and Hg. MICP had a higher solidification and stabilization effect on fly ash B, which has finer particle size and higher Ca content. These findings shone a light on the possibility of using MICP technique as a suitable and efficient tool to treat the MSWI fly ash.
Klíčová slova:
suspensions – Bacteria – Heavy metals – Toxicity – Cements – Urea – Crystals – Carbonates
Zdroje
1. Sukandar PT, Tanaka M, Aoyama I. Chemical stabilization of medical waste fly ash using chelating agent and phosphates. Heavy metals and ecotoxicity evaluation. Waste Management. 2009; 29(7): 2065–2070. doi: 10.1016/j.wasman.2009.03.005 19356916
2. Zhang BR, Zhou WX, Zhao HP, Tian ZP, Li FT, Wu YN. Stabilization/solidification of lead in MSWI fly ash with mercapto functionalized dendrimer chelator. Waste Manage. 2016; 50: 105–112. doi: 10.1016/ j.wasman.2016.02.001 26876776
3. Zhao YC, Song LJ, Li GJ. Chemical stabilization of MSW incinerator fly ashes. J Hazard Mater. 2002; 95(1): 47–63. doi: 10.1016/S0304- 3894(02)00002-X
4. Zacco A, Borgese L, Gianoncelli A, Struis RPWJ, Depero LE, Bontempi E. Review of fly ash inertisation treatments and recycling. Environ. Chem. Let. 2014; 12(1): 153–175. doi: 10.1007/s10311-014-0454-6
5. UbbrìAco P, Calabrese D. Solidification and stabilization of cement paste containing fly ash from municipal solid waste. Thermochim Acta. 1998; 321(1): 143–150. doi: 10.1016/S0040-6031(98)00453-5
6. Quina MJ, Bordado J, Quinta-Ferreira R. Chemical stabilization of air pollution control residues from municipal solid waste incineration. J Hazard Mater. 2010; 179(1–3): 382–392. doi: 10.1016/j.jhazmat.2010.03.016 20359820
7. Hong KJ, Tokunaga S, Kajiuchi T. Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater. 2000; 75: 57–73. doi: 10.1016/S0304-3894(00)00171-0 10828387
8. González I, Vázquez MA, Romero-Baena AJ, Barba-Brioso C. Stabilization of fly ash using cementing bacteria: assessment of cementation and trace element mobilization. J Hazard Mater. 2017; 321: 316–325. doi: 10.1016/j.jhazmat.2016.09.018 27639208
9. Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P. Management of municipal solid waste incineration residues. Waste Manage. 2003; 23(1): 61–88. doi: 10.1016/s0956-053x(02)00161-7
10. Wang YZ, Soga K, Dejong JT, Kabla AJ. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced carbonate precipitation (MICP). Géotechnique. 2018; 1–28. doi: 10.1680/jgeot.18.p.031
11. Wang YZ, Soga K, Dejong JT, Kabla AJ. Microscale Visualization of Microbial-Induced Calcium Carbonate Precipitation Processes. J Geotech Geoenviron Eng. 2019; 145(9): e04019045. doi: 10.1061/(ASCE)GT.1943-5606. 0002079
12. Muynck WD, Belie ND, Verstraete W. Microbial carbonate precipitation in construction materials: a review. Ecol Eng. 2010; 36(2):118–136. doi: 10.1016/j. ecoleng.2009.02.006
13. Chen XM, Zhao Y, Zeng CC, Li YJ, Zhu LJ, Wu JQ, et al. Assessment contributions of physicochemical properties and bacterial community to mitigate the bioavailability of heavy metals during composting based on structural equation models. Bioresource Technol. 2019; 289:121657. doi: 10.1016/j.biortech.2019.121657
14. Wong LS. Microbial cementation of ureolytic bacteria from the genus bacillus: a review of the bacterial application on cement-based materials for cleaner production. J Clean Prod. 2015; 93: 5–17. doi: 10.1016/ j.jclepro.2015.01.019
15. Pan XL. Micrologically induced carbonate precipitation as a promising way to in situ immobilize heavy metals in groundwater and sediment. Res J Chem Environ. 2009; 13(4): 3–4. doi: 10.1007/s12210-009-0064-6
16. Kumari D, Li M, Pan X, Qian XY. Effect of bacterial treatment on Cr(VI) remediation from soil and subsequent plantation of pisum sativum. Ecol Eng. 2014; 73: 404–408. doi: 10.1016/j.ecoleng.2014.09.093
17. Zhao Y, Yao J, Yuan ZM, Wang TQ, Zhang YY, Wang F. Bioremediation of cd by strain gz-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environ Sci Pollut R. 2017; 24(1): 372–380. doi: 10.1007/s11356-016-7810-y 27722882
18. Jiang NJ, Soga K. The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Géotechnique. 2017; 67(1): 42–55. doi: 10.1680/jgeot.15.p.182
19. Jiang NJ, Soga K, Kuo M. Microbially induced carbonate precipitation (MICP) for seepage-induced internal erosion control in sand-clay mixtures. J Geotech Geoenviron Eng. 2017; 143(3): 1–14. doi: 10.1061/(ASCE)GT.1943-5606. 0001559
20. Warren A, Maurice PA, Parmar N, Ferris FG. Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J. 2001; 18(1): 93–115. doi: 10.1080/01490450151079833
21. Hammes F, Boon N, Villiers JD, Verstraete W, Siciliano SD. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microb. 2003; 69(8): 4901–4909. doi: 10.1128/AEM.69.8.4901–4909 2003.
22. Ferris FG., Phoenix V, Fujita Y, Smith RW. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. Geochim Cosmochim Ac. 2004; 68(8): 1701–1710. doi: 10.1016/s0016-7037(03) 00503–9
23. Tang Q, Liu Y, Gu F, Zhou T. Solidification/stabilization of fly ash from a municipal solid waste incineration facility using Portland cement. Adv Mater Sci Eng. 2016; 2016:1–10. doi: 10.1155/2016/ 7101243
24. Qabany AA, Soga K. Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique. 2013; 63(4): 331–339. doi: 10.1680/geot.SIP13.P.022
25. Li M, Li L, Ogbonnaya U, Wen K, Tian A, Amini F. Influence of fiber addition on mechanical properties of micp-treated sand. J Mater Civil Eng. 2016; 28(4): 1–10. doi: 10.1061/(ASCE)MT.1943-5533.0001442
26. Tang Q, Zhang Y, Gao YF, Gu F. Use of cement-chelated solidified MSWI fly ash for pavement material: Mechanical and Environmental Evaluations. Can Geotech J. 2017; 54(11): 1553–1566. doi: 10.1139/cgj-2017-0007
27. He Z, Tang SW, Zhao GS, Chen E. Comparison of three and one dimensional attacks of freeze-thaw and carbonation for concrete samples. Constr Build Mater. 2016; 127: 596–606. doi: 10.1016/j.conbuildmat.2016.09. 069
28. Chancey RT, Stutzman P, Juenger M, Fowler DW. Comprehensive phase characterization of crystalline and amorphous phases of a class F fly ash. Cement Concrete Res. 2010; 40(1): 146–156. doi: 10.1016/j.cemconres.2009. 08.029
29. Achal V, Pan X, Özyurt N. Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng. 2011; 37(4): 554–559. doi: 10.1016/j.ecoleng.2010.11.009
30. Kohli SJ, Goyal D. Effect of fly ash application on some soil physical properties and microbial activities. Acta Agroph. 2010; 16(2): 327–335.
31. Ghosh RK, Singh N, Singh SB. Effect of fly ash amendment on metolachlor and atrazine degradation and microbial activity in two soils. Environ Monit Assess. 2016; 188(8): 1–10. doi: 10.1007/s10661-016- 5486-x
32. Wong MH, Wong J. Effects of fly ash on soil microbial activity. Environ Pollut. 1986; 40(2): 127–144. doi: 10.1016/0143-1471(86)90080-2
33. Saffigna Powlson DS, Brookes Thomas GA. Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian vertisol. Soil Biol Biochem. 1989; 21(6): 759–765. doi: 10.1016/0038–0717(89)90167-3
34. Bachmeier KL, Williams AE, Warmington JR, Bang SS. Urease activity in microbiologically-induced calcite precipitation. J Biotechnol. 2002; 93(2): 171–181. doi: 10.1016/s0168-1656(01)00393-5 11738724
35. Cheng L, Shahin MA, Cordruwisch R. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique. 2014; 64(12): 1010–1013. doi: 10.1680/geot.14.T.025
36. Martin D, Dodds K, Ngwenya BT, Butler I, Elphick S. Inhibition of sporosarcina pasteurii under anoxic conditions: implications for subsurface carbonate precipitation and remediation via ureolysis. Environ Sci Technol. 2012; 46(15): 8351–8355. doi: 10.1021/es3015875 22774923
37. Zhang YB, Soleimanbeigi A, Likos WJ, Edil TB. Geotechnical and Leaching Properties of Municipal Solid Waste Incineration Fly Ash for Use as Embankment Fill Material. Transport Res Board. 2016; 2579: 70–78. doi: 10.3141/2579-08
38. Huang WJ, Wu CT, Wu CE, Hsieh LH, Li CC, Lain CY, et al. Ternary blends containing demercurated lighting phosphor and MSWI fly ash as high-performance binders for stabilizing and recycling electroplating sludge. J Hazard Mater. 2008; 156(1–3):118–122. doi: 10.1016/j.jhazmat.2007.12.003 18207638
39. Yadav DS, Kumar V, Singh M, Relan PS. Effect of temperature and moisture on kinetics of urea hydrolysis and nitrification. Soil Res. 1987; 25(2): 185–191. doi: 10.1071/sr9870185
40. Li JS, Xue Q, Hu ZY, Li XW. Study of strength stability of municipal solid waste incinerator fly ash solidified by cement. Rock Soil Mech. 2013; 34(3): 751–756. (in Chinese)
41. Polettini A, Pomi R, Sirini P, Testa F. Properties of Portland cement—stabilised MSWI fly ashes. J Hazard Mater. 2001; 88(1):123–138. doi: 10.1016/S0304-3894(01)00292-8 11606245
42. Xu H, Miao JD, Chen P, Zhan LT, Wang YZ. Chemical and geotechnical properties of solidified/stabilized MSWI fly ash disposed at a landfill in China. Eng Geol. 2019; 255: 59–68. doi: 10.1016/j.enggeo.2019.04.019
43. Bie RS, Chen P, Song XF, Ji XY. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. J Energy Inst. 2016; 89:704–712. doi: 10.1016/j.joei.2015.04.006
44. Jiang JG, Wang J, Xin X, Wang W, Deng Z, Zhang Y. Heavy metal stabilization in municipal solid waste incineration fly ash using heavy metal chelating agents. J Hazard Mater. 2004; 113(1):141–146. doi: 10.1016/j.jhazmat.2004.05.030 15363524
45. Gong B, Deng Y, Yang YY, Tan SN, Liu QN, Yang WZ. Solidification and Biotoxicity Assessment of Thermally Treated Municipal Solid Waste Incineration (MSWI) Fly Ash. Inter J Env Res Pub Heal. 2017; 14:626. doi: 10.3390/ijerph14060626 28604580
46. Wang CP, Li FZ, Zhou MK, Chen Y, Chen X. Effect of cement-MSWI fly ash hydration on the stabilisation/solidification of Pb and Cd. Mater Res Innov. 2015; 19(S5): 1161–1166. doi: 10.1179/1432891714Z.000000000 1270
47. Liu H, Liang S, Gao JH, Ngo HH, Guo WS, Guo WS, et al. Enhancement of Cr(VI) removal by modifying activated carbon developed from Zizania caduciflora with tartaric acid during phosphoric acid activation. Chem Eng J. 2014; 246:168–174. doi: 10.1016/j.cej.2014.02.046
48. Zhang Y, Guo HX, Cheng XH. Role of calcium sources in the strength and microstructure of microbial mortar. Constr Build Mater. 2015; 77: 160–167. doi: 10.1016/j.conbuildmat.2014.12.040
49. Ylmén R, Jäglid U, Steenari BM, Panas I. Early hydration and setting of portland cement monitored by IR, SEM and Vicat techniques. Cement Concrete Res. 2009; 39(5): 433–439. doi: 10.1016/j.cemconres.2009.01.017
50. Li M, Cheng XH, Guo HX. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeter Biodegr. 2013; 76: 81–85. doi: 10.1016/j.ibiod.2012.06.016
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs