#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Using remote sensing to detect whale strandings in remote areas: The case of sei whales mass mortality in Chilean Patagonia


Autoři: Peter T. Fretwell aff001;  Jennifer A. Jackson aff001;  Mauricio J. Ulloa Encina aff002;  Vreni Häussermann aff003;  Maria J. Perez Alvarez aff005;  Carlos Olavarría aff008;  Carolina S. Gutstein aff009
Působiště autorů: British Antarctic Survey, Madingley Road, Cambridge, England, United Kingdom aff001;  Aquatic Animal Rescue and Conservation Unit, National Fisheries and Aquaculture Service of Chile, Valparaiso, Chile aff002;  Pontificia Universidad Católica de Valparaíso, Facultad de Recursos Naturales, Escuela de Ciencias del Mar, Avda. Brazil, Valparaíso, Chile aff003;  Huinay Scientific Field Station, Valparaíso, Chile aff004;  Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile aff005;  Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile aff006;  Centro de Investigación Eutropia, Santiago, Chile aff007;  Centro de Estudios Avanzados en Zonas Aridas (CEAZA), La Serena, Chile aff008;  Lab. Ontogenia y Filogenia, Depto. Biologiía, Fac. Ciencias, Universidad de Chile, Santiago, Chile aff009;  Consultora Paleosuchus Ltda, oficina C, Providencia, Santiago, Chile aff010
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222498

Souhrn

We test the ability of Very High Resolution satellite (VHR) imagery to detect stranded whales using both manual and automated methods. We use the 2015 mass mortality event in the Gulf of Penas locality, central Patagonia, Chile, as an initial case study. This event was the largest known mass mortality of baleen whales, with at least 343 whales, mainly sei whales (Balaenoptera borealis), documented as stranding. However, even with such a large number of whales, due to the remote location of the gulf the strandings went unrecorded for several weeks. Aerial and boat surveys of the area were conducted two to four months after the mortality event. In this study we use 50cm resolution WorldView2 imagery to identify and count strandings from two archival images acquired just after the stranding event and two months before the aerial and ground surveys, and to test manual and automated methods of detecting stranded whales. Our findings show that whales are easily detected manually in the images but due to the heterogeneous colouration of decomposing whales, spectral indices are unsuitable for automatic detection. Our satellite counts suggest that, at the time the satellite images were taken, more whales were stranded than recorded in the aerial survey, possibly due to the non-comprehensive coverage of the aerial survey or movement of the carcases between survey acquisition. With even higher resolution imagery now available, satellite imagery may be a cost effective alternative to aerial surveys for future assessment of the extent of mass whale stranding events, especially in remote and inaccessible areas.

Klíčová slova:

Islands – Marine mammals – Whales – Boats – Image analysis – Beaches – Remote areas – Geological surveys


Zdroje

1. Saavedra C, Pierce GJ, Gago J, Jusufovski D, Cabrero A, Cervino S, et al. (2017) Factors driving patterns and trends in strandings of small cetaceans. Mar Biol. 164 (8). ARTN 165 doi: 10.1007/s00227-017-3200-3

2. Perrin W.F., Geraci J.R. (2008) Stranding. In: Encyclopedia of Marine Mammals (eds. Perrin WF, Würsig B, Thewissen JGM), pp. 1118–1123. Academic Press, New York.

3. Rowntree V.J., Uhart M.M., Sironi M., Chirife A., Di Martino M., La Sala L., et al. (2013) Unexplained recurring high mortality of southern right whale Eubalaena australis calves at Península Valdés, Argentina. Mar. Ecol. Prog. Ser. 493, 275–289.

4. Evans K., Hindell M., Hince G. (2004) Concentrations of organochlorines in sperm whales (Physeter macrocephalus) from Southern Australian waters. Mar. Pollut. Bull. 48, 486–503. doi: 10.1016/j.marpolbul.2003.08.026 14980465

5. Evans K., Thresher R., Warneke R.M., Bradshaw C.J.A., Pook M., Thiele D., et al. (2005) Periodic variability in cetacean strandings: links to large-scale climate events. Biol. Lett. 1.

6. Rosas CL, Gil MN, Uhart MM. (2012) Trace metal concentrations in Southern Right Whale (Eubalaena australis) at Peninsula Valdes, Argentina. Mar Pollut Bull. 64 (6):1255–60. doi: 10.1016/j.marpolbul.2012.02.026 22465055

7. Lair S, Measures LN, Martineau D. (2016) Pathologic Findings and Trends in Mortality in the Beluga (Delphinapterus leucas) Population of the St Lawrence Estuary, Quebec, Canada, From 1983 to 2012. Vet Pathol. 53 (1):22–36. doi: 10.1177/0300985815604726 26374277

8. Truchon M.H., Measures L., L'Herault V., Brethes J.C., Galbraith P.S., Harvey M., et al. (2013) Marine Mammal Strandings and Environmental Changes: A 15-Year Study in the St. Lawrence Ecosystem. Plos One 8.

9. Pyenson N.D., Gutstein C.S., Parham J.F., Le Roux J.P., Carreño Chavarría C., Little H., et al. (2014) Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea. P Roy Soc B-Biol Sci 281.

10. Nash S.M.B., Baddock M.C., Takahashi E., Dawson A., Cropp R. (2017) Domoic acid poisoning as a possible cause of seasonal cetacean mass stranding events in Tasmania, Australia. Bull. Environ. Contam. Toxicol. 98, 8–13. doi: 10.1007/s00128-016-1906-4 27530123

11. Oremus M., Gale R., Kettles H., Scott Baker C. (2013) Genetic Evidence of Multiple Matrilines and Spatial Disruption of Kinship Bonds in Mass Strandings of Long-finned Pilot Whales, Globicephala melas, Journal of Heredity, Volume 104, Issue 3, Pages 301–311, doi: 10.1093/jhered/est007 23493607

12. Mannino M.A., Talamo S., Tagliacozzo A., Fiore I., Nehlich O., Piperno M., et al. (2015) Climate-driven environmental changes around 8,200 years ago favoured increases in cetacean strandings and Mediterranean hunter-gatherers exploited them. Sci Rep-Uk 5.

13. Dalebout M. L., Van Helden A., Van Waerebeek K., Baker C. S. (1998), Molecular genetic identification of southern hemisphere beaked whales (Cetacea: Ziphiidae). Molecular Ecology, 7: 687–694. doi: 10.1046/j.1365-294x.1998.00380.x 9640649

14. Pyenson N.D. (2011) The high fidelity of the cetacean stranding record: insights into measuring diversity by integrating taphonomy and macroecology. P Roy Soc B-Biol Sci 278, 3608–3616.

15. Peltier H., Dabin W., Daniel P., Van Canneyt O., Doremus G., Huon M., Ridoux V. (2012) The significance of stranding data as indicators of cetacean populations at sea: Modelling the drift of cetacean carcasses. Ecol. Indicators 18, 278–290.

16. Sundaram B., Poje A.C., Veit R.R., Nganguia H. (2006) Acoustical dead zones and the spatial aggregation of whale strandings. J. Theor. Biol. 238, 764–770. doi: 10.1016/j.jtbi.2005.06.022 16083913

17. Coughran D.K., Gales N.J., Smith H.C. (2013) A note on the spike in recorded mortality of humpback whales (Megaptera novaeangliae) in Western Australia. J. Cetacean Res. Manage. 13, 105–108.

18. Jepson P.D., Arbelo M., Deaville R., Patterson I.A.P. (2003) Gas-bubble lesions in stranded cetaceans—Was sonar responsible for a spate of whale deaths after an Atlantic military exercise? Nature 425, 575–576. doi: 10.1038/425575a 14534575

19. Jepson P.D., Deaville R., Patterson I.A.P., Pocknell A.M., Ross H. M., Baker J.R., et al. (2005) Acute and chronic gas bubble lesions in cetaceans stranded in the United Kingdom. Vet. Pathol. 42, 291–305. doi: 10.1354/vp.42-3-291 15872375

20. Peltier H, Ridoux V. (2015) Marine megavertebrates adrift: A framework for the interpretation of stranding data in perspective of the European Marine Strategy Framework Directive and other regional agreements. Environ. Sci. Policy. 54, 240–7. doi: 10.1016/j.envsci.2015.07.013

21. Fretwell P.T., Staniland I.J. & Forcada J. (2014) Whales from space: counting southern right whales by satellite. PloS one, 9 (2) e88655. doi: 10.1371/journal.pone.0088655 24533131

22. Cubaynes H.C., Fretwell P.T., Bamford C., Gerrish L. & Jackson J.A. (2018) Whales from space: Four mysticete species described using new VHR satellite imagery Marine Mammal Science, 2018, doi: 10.1111/mms.12544

23. Geraci JR, Anderson DM, Timperi RJ, Staubin DJ, Early GA, Prescott JH, et al. (1989) Humpback whales (Megaptera novaeangliae) fatally poisoned by dinoflagellate toxin. Can. J. Fish Aquat. Sci. 46 (11):1895–8. doi: 10.1139/f89-238

24. Hucke-Gaete R, Viddi F, Cassis D, Bedriñana L, Häussermann V, Pérez-Alvarez MJ., et al. eds. Informe técnico sobre la mortalidad masiva de ballenas en Puerto Slight y Caleta Buena, Golfo de Penas, Región de Aysén (expedición de mayo 2015). In: Puerto Aysen: Fiscalía de Aysen. Fiscalía de Aysén. 2015. Official request SIAC nr 460428815 for report.

25. Häussermann V., Gutstein C.S., Beddington M., Cassis D., Olavarria C., Dale A.C., et al. (2017) Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom. PeerJ Preprints https://doi.org/10.7287/peerj.preprints.2707v1.

26. Ulloa,. M.A.E., (2015) Gulf of Penas expedition, Mysticetes Large Mortality Event in Chile. Sernapesca internal report. Ministerio de Economai, Fomento y Turismo, Chile.

27. SERNAPESCA (2016) SERNAPESCA statistical report 2016, http://www.sernapesca.cl/informes/estadisticas

28. Maurer T. (2013), How to pan-sharpen images using the gram-schmidt pan-sharpen method–A recipe. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Services, vol xl-1/w2, ISPRS, Hannover Workshop 2013.

29. Kruse F. A., Lefkoff A. B., Boardman J. B.,. Heidebrecht K. B, Shapiro A. T., Barloon P. J., et al. "The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging spectrometer Data." Remote Sensing of Environment 44 (1993): 145–163.

30. McFeeters S.K. (2007) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Remote Sensing Letters, Pages 1425–1432, https://doi.org/10.1080/01431169608948714

31. Gao B.-C. 1996. NDWI -A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58: 257–266 https://doi.org/10.1117/12.210877

32. Fretwell P.T., Scofield P., Phillips R.A., (2017) Using super-high resolution satellite imagery to census threatened albatrosses. Ibis 159, (3) 481–490.

33. Blaschke T. (2009) Object based image analysis for remote sensing. ISPRS Journal of Photogrametry and Remote Sensing. 65 (1) 2–16. http://doi.org/10.1016/j.isprsjprs.2009.06.004

34. Larue M.A. & Knight J. (2014) Applications of very high-resolution imagery in the study and conservation of large predators in the Southern Ocean. Conservation Biology, 28, 1731–5. doi: 10.1111/cobi.12367 25103277

35. LaRue M.A., Stapleton S., Anderson M. (2016), Feasibility of using high-resolution satellite imageryto assess vertebrate wildlife populations. Conservation Biology, 31, 213–220 doi: 10.1111/cobi.12809 27564920

36. Hollings T, Burgman M, Andel M, Gilbert M, Robinson T, Robinson A. (2018) How do you find the green sheep? A critical review of the use of remotely sensed imagery to detect and count animals. Methods Ecol Evol., 9: 881–892. https://doi.org/10.1111/2041-210X.12973


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#