#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Coherent poly propagation materials with 3-dimensional photonic control over visible light


Autoři: Michelle R. Stem aff001
Působiště autorů: Department of Materials Research, Complete Consulting Services, LLC., Big Rapids, Michigan, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223715

Souhrn

The purpose of the present research was to identify and examine materials demonstrating a previously undiscovered property of coherent poly propagation (CPP). The materials were amorphous silicates as natural precious opals. CPP enabled three-dimensional photonic control over mono and polychromatic visible light wavelengths. CPP caused coherent diffraction of incident poly and monochromatic light. Apart from the iconic play-of-color of precious opal, CPP specimens demonstrated diffractive photonic demultiplexing and/or upconversion and/or downconversion of incident light with strong photonic coherence such that the shape of the incident light source was propagated over three dimensions over multiple visible frequencies. CPP events manifested as each specimen was rocked under the incident light. Additionally, the specimens demonstrated atypical control over internally reflected and transmitted light. The specimens applied axial rotational symmetry over the incident light. Amorphous materials would be expected to exert no symmetry control. CPP and rotational properties occurred in isolation from exogenous thermal, photonic and electrical influences. Furthermore, several non-destructive analytical instruments were employed, such as: spectrophotometer, polariscope and refractometer. The analytical methods revealed unusual behaviors of these specimens. The application of materials demonstrating three-dimensional photonic control will have far-reaching implications for many industries, including: photonic wavelength demultiplexing, fiber optics, imaging, microscopy, projections, security, cryptography, computers and communications.

Klíčová slova:

Light – Artificial light – Lasers – Optical materials – Thermal conductivity – Photons – Fiber optics – Visible light


Zdroje

1. Stem MR. Interactions of low-power photons with natural opals–PBG materials, photonic control, natural metamaterials, spontaneous laser emissions, and band-gap boundary responses. Mat. Sci. & Eng. B. 2012; 177; 11: 797–804. doi: 10.1016/j.mseb.2012.03.031

2. Rastogi V, Melle S, Calderon OG, Garcia AA, Marquez M, Velev OD, et al. Synthesis of light-diffracting assemblies from microspheres and nanoparticles in droplets on a superhydrophobic surface. Adv. Mat. 2008; 20; 22: 4263–4268. doi: 10.1002/adma.200703008

3. Graetsch H, Gies H, Topalović I. NMR, XRD and IR study on microcrystalline opals. Phys. and Chem. of Miner. 1994; 21; 3: 166–175. doi: 10.1007/BF00203147

4. Stem MR. Updated advances in micrographic analyses of select photonically responsive natural silicates. Presented at 10th International Conference and Exhibition on Lasers, Optics & Photonics. Keynote. Los Angeles, California, USA. 26–28 November 2019.

5. Schumann W. Gemstones of the world, 5th ed. Sterling Publishing, New York, 2013; pp. 166–169. ISBN: 978-1-4549-0953-8.

6. Li F. Study of stress measurement using polariscope. Thesis for Doctor of Philosophy in Mechanical Engineering, Georgia Institute of Technology. 2010. http://hdl.handle.net/1853/34762.

7. Chow E, Lin SY, Johnson SG, Villeneuve PR, Joannopoulos JD, Wendt JR, et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nat. 2000; 407: 983–986. doi: 10.1038/35039583 11069173

8. Inoue T, Asano T, Noda S. Spectral control of near-field thermal radiation via photonic band engineering of two-dimensional photonic crystal slabs. Opt. Exp. 2018; 26; 24: 32074–32082. doi: 10.1364/OE.26.032074 30650786

9. Jing P, Wu J, Lin L. Patterned optical trapping with two-dimensional photonic crystals. ACS Photonics. 2014; 1: 398–402. doi: 10.1021/ph500041m

10. Papaioannou M, Plum E, Valente J, Rogers ETF, Zheludev NI. Two-dimensional control of light with light on metasurfaces. Light: Sci. & Appl. 2016; 5: e16070. doi: 10.1038/lsa.2016.70 30167161

11. Wu S, Buckley S, Jones AM, Ross JS, Ghimire NJ, Yan J, Mandrus DG, et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mat. 2014; 1; 1: 011001. doi: 10.1088/2053-1583/1/1/011001

12. Ishizaki K, Noda S. Manipulation of photons at the surface of three-dimensional photonic crystals. Nat. 2009; 460: 367–370. doi: 10.1038/nature08190 19606144

13. Arpin KA, Losego MD, Cloud AN, Ning H, Mallek J, Sergeant NP, et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 2013; 4: 2630. doi: 10.1038/ncomms3630 24129680

14. Shir D, Nelson EC, Chen YC, Brzezinski A, Liao H, Braun PV, et al. Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography. Appl. Phys. Lett. 2009; 94; 1: 011101. doi: 10.1063/1.3036955

15. Dong J-W, Chen X-D, Zhu H, Wang Y, Zhang X. Valley photonic crystals for control of spin and topology. Nat. Mat. 2017; 16: 298–302. doi: 10.1038/nmat4807 27893722

16. Stem MR. Coherent poly-propagation of diffracted white light in a natural silicate. Presented at Materials Science & Technology 2017. Ceramic-based Optical Materials and Advanced Processing Symposium. Pittsburgh, Pennsylvania, USA. 8–12 October 2017.

17. Stem MR. Updated advances in coherent poly-propagation of diffracted white light in a natural silicate. Presented at Materials Science & Technology 2018. Ceramic-based Optical Materials and Advanced Processing Symposium. Columbus, Ohio, USA. 14–18 October 2018.

18. Martinez A, Marti J, Bravo-Abadj J, Sanchez-Dehesa J. Wavelength demultiplexing structure based on coupled-cavity waveguides in photonic crystals. Fiber and Integr. Opt. 2003; 22: 151–160. doi: 10.1080/01468030390111959

19. Jiang W, Jianga Y, Gua L, Chena X, Chena RT. Photonic crystal devices for wavelength-division-multiplexing and optical modulation. Presented at Active and Passive Optical Components for WDM Communications V. Proc. of SPIE V6014, 60140F, USA. 2005.

20. Almeida VR, Barrios CA, Panepucci RR, Lipson M. All-optical control of light on a silicon chip. Nat. 2004; 431: 1081–1084. doi: 10.1038/nature02921 15510144

21. Yang J, Ghimire I, Wu PC, Gurung S, Arndt C, et al. Photonic crystal fiber metalens. Nanophotonics. 2019; 8; 3: 443–449. doi: 10.1515/nanoph-2018-0204

22. Zhang L, Lou J, Tong L. Micro/nanofiber optical sensors. Photonic Sens. 2011; 1; 1: 31–42. doi: 10.1007/s13320-010-0022-z

23. Forli A, Vecchia D, Binini N, Succol F, Bovetti S, Moretti C, et al. Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep. 2018; 22; 11: 3087–3098. doi: 10.1016/j.celrep.2018.02.063 29539433

24. Caselli N, Intonti F, La China F, Riboli F, Gerardino A, Bao W, et al. Ultra-subwavelength phase-sensitive nano-imaging of localized photonic modes. Light: Sci. & Appl. 2015; 4: e326. doi: 10.1038/lsa.2015.99

25. Aharoni D, Khakh BS, Silva AJ, Golshani P. All the light that we can see: a new era in miniaturized microscopy. Nat. Methods. 2019; 16: 11–13. doi: 10.1038/s41592-018-0266-x 30573833

26. Aspuru-Guzik A, Walther P. Photonic quantum simulators. Nat. Phys. 2012; 8: 285–291. doi: 10.1038/nphys2253

27. Qiang X, Zhou X, Wang J, Wilkes CM, Loke T, O’Gara S, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics. 2018; 12: 534–539. doi: 10.1038/s41566-018-0236-y

28. Wang X, Zhou L, Li R, Xie J, Lu L, Wu K, et al. Continuously tunable ultra-thin silicon waveguide optical delay line. Optica. 2017; 4; 5: 507–515. doi: 10.1364/OPTICA.4.000507

29. McKenna TP, Nanzer JA, Clark TR Jr. Photonic millimeter-wave system for high-capacity wireless communications. Johns Hopkins APL Technical Dig. 2015; 33; 1: 57–67. doi: 10.1109/MWSYM.2015.7166991

30. Martins ER, Li J, Liu YK, Depauw V, Chen Z, Zhou J, et al. Deterministic quasi-random nanostructures for photon control. Nat. Commun. 2013; 4: 2665. doi: 10.1038/ncomms3665 24154558

31. Li Z, Kim M-H, Wang C, Han Z, Shrestha S, Overvig AC, et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol. 2017; 12: 675–683. doi: 10.1038/nnano.2017.50 28416817

32. Magden ES, Li N, Raval M, Poulton CV, Ruocco A, Singh N, et al. Transmissive silicon photonic dichroic filters with spectrally selective waveguides. Nat. Commun. 2018; 9: 3009. doi: 10.1038/s41467-018-05287-1 30068975

33. Xing H, Li J, Shi Y, Guo J, Wei J. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS Appl. Mat. Interfaces. 2016; 8: 14. doi: 10.1021/acsami.6b01033 26996608

34. Hou J, Li M, Song Y. Recent advances in colloidal photonic crystal sensors: materials, structures and analysis methods. Nanotoday. 2018; 22: 132–144. doi: 10.1016/j.nantod.2018.08.008

35. Fedyanin AA, Aktsipetrov OA, Kurdyukov DA, Golubev VG, Inoue M. Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals. Appl. Phys. Lett. 2005; 87: 151111. doi: 10.1063/1.2077836

36. Smallwood A, Thomas PS, Ray AS, Simon P. TMA and SEM characterization of the thermal dehydration of Australian sedimentary opal. J. of Therm. Anal. and Calorim. 2007; 88; 1: 185–188. doi: 10.1007/s10973-006-8136-7

37. Rapin W, Chauvire B, Gabriel TSJ, McAdam AC, Ehlmann BL, Hardgrove C, et al. In situ analysis of opal in gale crater. Mars, JGR Planets 2018 123 8 1955–1972. doi: 10.1029/2017JE005483

38. Koivula JI, Kammerling RC. "Opalite": plastic imitation opal with true play-of-color. Gems & Gemol. 1989; 25; 1: 30–34.

39. Kepinska M, Starczewska A, Duka P. Method of determining dispersion dependence of refractive index of nanospheres building opals. Opt. Mater. 2017; 73: 437–440. doi: 10.1016/j.optmat.2017.08.036

40. Albrecht JD, Knipp PA, Reinecke TL. Thermal conductivity of opals and related composites. Phys. Rev. B. 2001; 63: 134303. doi: 10.1103/PhysRevB.63.134303

41. Hughes RW. Pleochroism in faceted gems: an introduction. Gems & Gemol. 2014; 50; 3: 216–227.

42. Mastropasqua R, Nubile M, Salgari N, Lanzini M, Calienno R, Mattei PA, et al. Interference figures of polarimetric interferometry analysis of the human corneal stroma. PLOS ONE. 2017; 12; 6: e0178397. doi: 10.1371/journal.pone.0178397 28570631

43. Some methods of locating the optic axis in quartz. The Marconi Review Editor: Dowsett HM, M.I.E.E., F., Inst. P., Assistant Editor: Walker LEQ, A.R.C., Marconi’s Wireless Telegraph Company Ltd., Electra House, Victoria Embankment, London, W.C. September–October 1936; 62: 1–7.

44. Lequime M, Amra C. Anomalous refraction of a low divergence monochromatic light beam in a transparent slab. Opt. Lett. 2018; 43; 7: 1419–1422. doi: 10.1364/OL.43.001419 29600994

45. Sosnowska I, Buchenau U, Reichenauer G, Graetsch H, Ibel K, Frick B. Structure and dynamics of the opal silica-water system. Physica B: Condens. Matter. 1997; 234–236: 455–457. doi: 10.1016/S0921-4526(96)01009-5

46. Eckert J, Gourdon O; Jacob DE, Meral C, Monteiro PJM, Vogel SC, et al. Ordering of water in opals with different microstructures. Eur. J. of Mineral. 2015; 27; 2: 203–213. doi: 10.1127/ejm/2015/0027-2428


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#