Linoleic acid supplementation of cell culture media influences the phospholipid and lipid profiles of human reconstructed adipose tissue
Autoři:
Marie-Ève Ouellette aff001; Jean-Christophe Bérubé aff003; Jean-Michel Bourget aff001; Maud Vallée aff001; Yohan Bossé aff003; Julie Fradette aff001
Působiště autorů:
Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
aff001; Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
aff002; Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
aff003; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Canada
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224228
Souhrn
Reconstructed human adipose tissues represent novel tools available to perform in vitro pharmaco-toxicological studies. We used adipose-derived human stromal/stem cells to reconstruct, using tissue engineering techniques, such an adipose tridimensional model. To determine to what extent the in vitro model is representative of its native counterpart, adipogenic differentiation, triglycerides accumulation and phospholipids profiles were analysed. Ingenuity Pathway Analysis software revealed pathways enriched with differentially-expressed genes between native and reconstructed human adipose tissues. Interestingly, genes related to fatty acid metabolism were downregulated in vitro, which could be explained in part by the insufficient amount of essential fatty acids provided by the fetal calf serum used for the culture. Indeed, the lipid profile of the reconstructed human adipose tissues indicated a particular lack of linoleic acid, which could interfere with physiological cell processes such as membrane trafficking, signaling and inflammatory responses. Supplementation in the culture medium was able to influence the lipid profile of the reconstructed human adipose tissues. This study demonstrates the possibility to directly modulate the phospholipid profile of reconstructed human adipose tissues. This reinforces its use as a relevant physiological or pathological model for further pharmacological and metabolic studies of human adipose tissue functions.
Klíčová slova:
Lipids – Phospholipids – Fatty acids – Fats – Adipose tissue – Lipid analysis – Lipid metabolism – Adipocytes
Zdroje
1. Haag M, Dippenaar NG. Dietary fats, fatty acids and insulin resistance: short review of a multifaceted connection. Med Sci Monit. 2005;11(12):RA359–67. 16319806.
2. Schumann J. It is all about fluidity: Fatty acids and macrophage phagocytosis. Eur J Pharmacol. 2016;785:18–23. doi: 10.1016/j.ejphar.2015.04.057 25987422.
3. Stanley WC, Khairallah RJ, Dabkowski ER. Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care. 2012;15(2):122–6. doi: 10.1097/MCO.0b013e32834fdaf7 22248591.
4. Putti R, Migliaccio V, Sica R, Lionetti L. Skeletal Muscle Mitochondrial Bioenergetics and Morphology in High Fat Diet Induced Obesity and Insulin Resistance: Focus on Dietary Fat Source. Front Physiol. 2015;6:426. doi: 10.3389/fphys.2015.00426 26834644.
5. Rohrbach S. Effects of dietary polyunsaturated fatty acids on mitochondria. Curr Pharm Des. 2009;15(36):4103–16. doi: 10.2174/138161209789909692 20041812.
6. Boland LM, Drzewiecki MM. Polyunsaturated fatty acid modulation of voltage-gated ion channels. Cell Biochem Biophys. 2008;52(2):59–84. doi: 10.1007/s12013-008-9027-2 18830821
7. Wassall SR, Brzustowicz MR, Shaikh SR, Cherezov V, Caffrey M, Stillwell W. Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation. Chem Phys Lipids. 2004;132(1):79–88. doi: 10.1016/j.chemphyslip.2004.09.007 15530450.
8. Shaikh SR, Kinnun JJ, Leng X, Williams JA, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim Biophys Acta. 2015;1848(1 Pt B):211–9. doi: 10.1016/j.bbamem.2014.04.020 24820775.
9. Elinder F, Liin SI. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Front Physiol. 2017;8:43. doi: 10.3389/fphys.2017.00043 28220076.
10. Hou TY, McMurray DN, Chapkin RS. Omega-3 fatty acids, lipid rafts, and T cell signaling. Eur J Pharmacol. 2016;785:2–9. doi: 10.1016/j.ejphar.2015.03.091 26001374.
11. Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochim Biophys Acta. 2013;1833(11):2499–510. doi: 10.1016/j.bbamcr.2013.05.018 23711956.
12. Basiouni S, Fuhrmann H, Schumann J. The influence of polyunsaturated fatty acids on the phospholipase D isoforms trafficking and activity in mast cells. Int J Mol Sci. 2013;14(5):9005–17. doi: 10.3390/ijms14059005 23698760.
13. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015;1851(4):469–84. doi: 10.1016/j.bbalip.2014.08.010 25149823.
14. Alvarez-Llamas G, Szalowska E, de Vries MP, Weening D, Landman K, Hoek A, et al. Characterization of the human visceral adipose tissue secretome. Mol Cell Proteomics. 2007;6(4):589–600. doi: 10.1074/mcp.M600265-MCP200 17255083.
15. Ali Khan A, Hansson J, Weber P, Foehr S, Krijgsveld J, Herzig S, et al. Comparative Secretome Analyses of Primary Murine White and Brown Adipocytes Reveal Novel Adipokines. Mol Cell Proteomics. 2018;17(12):2357–70. doi: 10.1074/mcp.RA118.000704 30135203.
16. Madsen L, Petersen RK, Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta. 2005;1740(2):266–86. doi: 10.1016/j.bbadis.2005.03.001 15949694.
17. Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974;3(2):127–33. doi: 10.1016/0092-8674(74)90116-0 4426090.
18. Brown JM, McIntosh MK. Conjugated linoleic acid in humans: regulation of adiposity and insulin sensitivity. J Nutr. 2003;133(10):3041–6. doi: 10.1093/jn/133.10.3041 14519781.
19. Madsen L, Petersen RK, Sorensen MB, Jorgensen C, Hallenborg P, Pridal L, et al. Adipocyte differentiation of 3T3-L1 preadipocytes is dependent on lipoxygenase activity during the initial stages of the differentiation process. Biochem J. 2003;375(Pt 3):539–49. doi: 10.1042/bj20030503 18320708.
20. Petersen RK, Jorgensen C, Rustan AC, Froyland L, Muller-Decker K, Furstenberger G, et al. Arachidonic acid-dependent inhibition of adipocyte differentiation requires PKA activity and is associated with sustained expression of cyclooxygenases. J Lipid Res. 2003;44(12):2320–30. doi: 10.1194/jlr.M300192-JLR200 12923227.
21. Yan H, Kermouni A, Abdel-Hafez M, Lau DC. Role of cyclooxygenases COX-1 and COX-2 in modulating adipogenesis in 3T3-L1 cells. J Lipid Res. 2003;44(2):424–9. doi: 10.1194/jlr.M200357-JLR200 12576525.
22. Proulx M, Safoine M, Mayrand D, Aubin K, Maux A, Fradette J. Impact of TNF and IL-1β on capillary networks within engineered human adipose tissues. J Mater Chem B. 2016;4:3608–19.
23. Aubin K, Safoine M, Proulx M, Audet-Casgrain MA, Cote JF, Tetu FA, et al. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-alpha. PLoS One. 2015;10(9):e0137612. doi: 10.1371/journal.pone.0137612 26367137.
24. Tanzi MC, Fare S. Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices. 2009;6(5):533–51. doi: 10.1586/erd.09.37 19751125.
25. Vermette M, Trottier V, Menard V, Saint-Pierre L, Roy A, Fradette J. Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials. 2007;28(18):2850–60. doi: 10.1016/j.biomaterials.2007.02.030 17374391.
26. L'Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12(1):47–56. doi: 10.1096/fasebj.12.1.47 9438410.
27. Burr G, MM B. On the nature and role of the fatty acids essential in nutrition. J Biol Chem. 1930;86:587–621.
28. Burr GO, Burr MM. New deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem. 1929;82(2):345–67.
29. Hashimoto M, Hossain S, Yamasaki H, Yazawa K, Masumura S. Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids. 1999;34(12):1297–304. doi: 10.1007/s11745-999-0481-6 10652989.
30. Ehehalt R, Sparla R, Kulaksiz H, Herrmann T, Fullekrug J, Stremmel W. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts). BMC Cell Biol. 2008;9:45. doi: 10.1186/1471-2121-9-45 18700980.
31. Seo MJ, Oh DK. Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog Lipid Res. 2017;66:50–68. doi: 10.1016/j.plipres.2017.04.003 28392405.
32. Das UN. A defect in the activity of Delta6 and Delta5 desaturases may be a factor in the initiation and progression of atherosclerosis. Prostaglandins Leukot Essent Fatty Acids. 2007;76(5):251–68. doi: 10.1016/j.plefa.2007.03.001 17466497.
33. Stoll LL, Spector AA. Changes in serum influence the fatty acid composition of established cell lines. In Vitro. 1984;20(9):732–8. doi: 10.1007/bf02618879 6500611.
34. Fortier GM, Gauvin R, Proulx M, Vallee M, Fradette J. Dynamic culture induces a cell type-dependent response impacting on the thickness of engineered connective tissues. J Tissue Eng Regen Med. 2013;7(4):292–301. doi: 10.1002/term.522 22162315.
35. Vallee M, Cote JF, Fradette J. Adipose-tissue engineering: taking advantage of the properties of human adipose-derived stem/stromal cells. Pathol Biol (Paris). 2009;57(4):309–17. doi: 10.1016/j.patbio.2008.04.010 18534784.
36. Labbe B, Marceau-Fortier G, Fradette J. Cell sheet technology for tissue engineering: the self-assembly approach using adipose-derived stromal cells. Methods Mol Biol. 2011;702:429–41. doi: 10.1007/978-1-61737-960-4_31 21082420.
37. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–93. doi: 10.1093/bioinformatics/19.2.185 12538238.
38. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24(13):1547–8. doi: 10.1093/bioinformatics/btn224 18467348.
39. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21. doi: 10.1073/pnas.091062498 11309499.
40. Luna LG. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. New-York: Blakiston Division, McGraw-Hill; 1968.
41. Masson P. Some histological methods: trichrome staining and their preliminary technique. J Tech Methods. 1929;12(75).
42. Aubin K, Vincent C, Proulx M, Mayrand D, Fradette J. Creating capillary networks within human engineered tissues: impact of adipocytes and their secretory products. Acta Biomater. 2015;11:333–45. doi: 10.1016/j.actbio.2014.09.044 25278444.
43. Shaikh NA, Downar E. Time course of changes in porcine myocardial phospholipid levels during ischemia. A reassessment of the lysolipid hypothesis. Circ Res. 1981;49(2):316–25. doi: 10.1161/01.res.49.2.316 7249269.
44. Lepage G, Roy CC. Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res. 1986;27(1):114–20. 3958609.
45. Caron-Jobin M, Mauvoisin D, Michaud A, Veilleux A, Noel S, Fortier MP, et al. Stearic acid content of abdominal adipose tissues in obese women. Nutr Diabetes. 2012;2:e23. doi: 10.1038/nutd.2011.19 23154679.
46. Wilcox R. Introduction to robust estimation and hypothesis testing. 2nd edition ed. Amsterdam: Elsevier; 2005.
47. Christie PE, Henderson WR Jr. Lipid inflammatory mediators: leukotrienes, prostaglandins, platelet-activating factor. Clin Allergy Immunol. 2002;16:233–54. 11577541.
48. Wallace JM. Nutritional and botanical modulation of the inflammatory cascade—eicosanoids, cyclooxygenases, and lipoxygenases—as an adjunct in cancer therapy. Integr Cancer Ther. 2002;1(1):7–37; discussion doi: 10.1177/153473540200100102 14664746.
49. Brown JM, Halvorsen YD, Lea-Currie YR, Geigerman C, McIntosh M. Trans-10, cis-12, but not cis-9, trans-11, conjugated linoleic acid attenuates lipogenesis in primary cultures of stromal vascular cells from human adipose tissue. J Nutr. 2001;131(9):2316–21. doi: 10.1093/jn/131.9.2316 11533273.
50. Guemes M, Rahman SA, Hussain K. What is a normal blood glucose? Arch Dis Child. 2016;101(6):569–74. doi: 10.1136/archdischild-2015-308336 26369574.
51. Masuda M, Miyazaki-Anzai S, Keenan AL, Okamura K, Kendrick J, Chonchol M, et al. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity. J Clin Invest. 2015;125(12):4544–58. doi: 10.1172/JCI82871 26517697.
52. Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids. 2010;45(10):893–905. doi: 10.1007/s11745-010-3393-4 20354806.
53. Rudkowska I, Julien P, Couture P, Lemieux S, Tchernof A, Barbier O, et al. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) -1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation. Mol Nutr Food Res. 2014;58(5):1079–86. doi: 10.1002/mnfr.201300426 24375980.
54. Hemmrich K, von Heimburg D, Rendchen R, Di Bartolo C, Milella E, Pallua N. Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials. 2005;26(34):7025–37. doi: 10.1016/j.biomaterials.2005.04.065 15964623.
55. Kral JG, Crandall DL. Development of a human adipocyte synthetic polymer scaffold. Plast Reconstr Surg. 1999;104(6):1732–8. doi: 10.1097/00006534-199911000-00018 10541176.
56. Rubin JP, Bennett JM, Doctor JS, Tebbets BM, Marra KG. Collagenous microbeads as a scaffold for tissue engineering with adipose-derived stem cells. Plast Reconstr Surg. 2007;120(2):414–24. doi: 10.1097/01.prs.0000267699.99369.a8 17632343.
57. Flynn L, Prestwich GD, Semple JL, Woodhouse KA. Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials. 2007;28(26):3834–42. doi: 10.1016/j.biomaterials.2007.05.002 17544502.
58. Hong L, Peptan IA, Colpan A, Daw JL. Adipose tissue engineering by human adipose-derived stromal cells. Cells Tissues Organs. 2006;183(3):133–40. doi: 10.1159/000095987 17108684.
59. Mahoney CM, Imbarlina C, Yates CC, Marra KG. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations. Front Pharmacol. 2018;9:507. doi: 10.3389/fphar.2018.00507 29867506.
60. Jean J, Bernard G, Duque-Fernandez A, Auger FA, Pouliot R. Effects of serum-free culture at the air-liquid interface in a human tissue-engineered skin substitute. Tissue Eng Part A. 2011;17(7–8):877–88. doi: 10.1089/ten.TEA.2010.0256 21067466.
61. Pouliot R, Larouche D, Auger FA, Juhasz J, Xu W, Li H, et al. Reconstructed human skin produced in vitro and grafted on athymic mice. Transplantation. 2002;73(11):1751–7. doi: 10.1097/00007890-200206150-00010 12084997.
62. Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells. 2008;26(10):2713–23. doi: 10.1634/stemcells.2008-0031 18617689
63. Zheng Y, Yin H, Boeglin WE, Elias PM, Crumrine D, Beier DR, et al. Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope. J Biol Chem. 2011;286(27):24046–56. doi: 10.1074/jbc.M111.251496 21558561.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis