Niche partitioning and coexistence of two spiders of the genus Peucetia (Araneae, Oxyopidae) inhabiting Trichogoniopsis adenantha plants (Asterales, Asteraceae)
Autoři:
German Antonio Villanueva-Bonilla aff001; Suyen Safuan-Naide aff002; Mathias Mistretta Pires aff003; João Vasconcellos-Neto aff003
Působiště autorů:
Programa de Pós-graduação em Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
aff001; Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Botucatu, SP, Brazil
aff002; Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0213887
Souhrn
Niche theory suggests that the coexistence of ecologically similar species in the same site requires some form of resource partitioning that reduces or avoids interspecific competition. Here, from July 2013 to December 2015, we investigated spatial niche differentiation at three different scales of two sympatric congeneric spiders, Peucetia rubrolineata and P. flava, along an altitudinal gradient in shaded and open areas in an Atlantic forest in Serra do Japi, SP, Brazil. These spiders are peculiar in that they present an exclusive association with the plant Trichogoniopsis adenantha (Asteraceae). In theory, the coexistence of two Peucetia species could be explained by: (1) microhabitat segregation with individuals from different species occupying different parts of the same plants; (2) mesohabitat segregation with different species using plant in different environments; (3) macrohabitat segregation, where different species would not co-occur along the altitudinal gradient. With respect to micro-habitat use, in both species, different instars used different plant parts, while the same instars of both species used the same type of substrate. However, the two Peucetia species segregated by meso-habitat type, with P. rubrolineata preferring T. adenantha plants in shaded areas and P. flava preferring those in open areas. Our results support the hypothesis of niche partitioning begetting diversity, and highlight the importance of analyzing habitat use at multiple scales to understand mechanisms related to coexistence.
Klíčová slova:
Spiders – Leaves – Species interactions – Predation – Ecological niches – Flowering plants – Flowers – Chi square tests
Zdroje
1. Stevens GC. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat. 1989;133(2): 240–256.
2. Hubbell SP. The unified neutral theory of biodiversity and biogeography (MPB-32) (Vol. 32). Princeton University Press; 2001
3. Tilman D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci USA. 2004;101 (30): 10854–10861. doi: 10.1073/pnas.0403458101 15243158
4. Siepielski AM, McPeek MA. On the evidence for species coexistence: a critique of the coexistence program. Ecology. 2010;91(11): 3153–3164. doi: 10.1890/10-0154.1 21141177
5. Brown JH. Why are there so many species in the tropics? J Biogeogr. 2014;41: 8–22. doi: 10.1111/jbi.12228 25684838
6. Chillo V, Rodríguez D, Ojeda RA. Niche partitioning and coexistence between two mammalian herbivores in the Dry Chaco of Argentina. Acta Oecol. 2010;36: 611–616.
7. Gause GF. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science. 1934;79(2036): 16–17.
8. Hardin G. The competitive exclusion principle. Science. 1960;131(3409): 1292–1297. doi: 10.1126/science.131.3409.1292 14399717
9. Vance RR. Interference competition and the coexistence of two competitors on a single limiting resource. Ecology. 1984;65(5): 1349–1357.
10. Hendrickx F, De Cock K, De Bakker D, Maelfait JP. Differences in geographic distribution and habitat of some cryptic species in the Pardosa lugubris group (Lycosidae, Araneae) in Belgium. Belgian journal of zoology. 2001;131(2): 79–84.
11. DeVito J, Meik JM, Gerson MM, Formanowicz JrDR. Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Canadian journal of zoology. 2004;82(7): 1119–1125.
12. Kelly CK, Bowler MG. Temporal niche dynamics, relative abundance and phylogenetic signal of coexisting species. Theor Ecol. 2009;2: 161–169.
13. Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31(1), 343–366.
14. Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol. 2010;36: 403–412.
15. Young HS, Shaffer SA, McCauley DJ, Foley DJ, Dirzo R, Block BA. Resource partitioning by species but not sex in sympatric boobies in the Central Pacific Ocean. Mar. Ecol. Prog. Ser. 2010;403: 291–301.
16. Novcic I. Niche dynamics of shorebirds in Delaware Bay: Foraging behavior, habitat choice and migration timing. Acta Oecol. 2016;75: 68–76.
17. Toft CA. Resource partitioning in amphibians and reptiles. Copeia, 1985;1: 1–21.
18. Segurado P, Figueiredoa D. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol. 2007;32: 134–144.
19. Ross S. T. Resource partitioning in fish assemblages: a review of field studies. Copeia. 1986;352–388.
20. Boyer S, Rivault C. Habitat selection and coexistence of invasive cockroach species (Dictyoptera) in sugar-cane fields on Réunion island. Acta Oecol. 2005;29: 16–26.
21. Wise DH. Spiders in ecological webs. Cambridge: Cambridge University Press; 1995.
22. Wise DH. Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu. Rev. Entomol. 2006;51: 441–465. doi: 10.1146/annurev.ento.51.110104.150947 16332219
23. Marshall SD, Rypstra AL. Spider competition in structurally simple ecosystems. Journal of Arachnology 1999;27: 343–350.
24. Michalko R, Pekar S. Niche partitioning and niche filtering jointly mediate the coexistence of three closely related spider species (Araneae, Philodromidae). Ecol Entomol. 2015;40(1): 22–33.
25. Turnbull AL. Ecology of the true spiders. Annu Rev Entomol, 1973;18: 305–348.
26. Castanheira P, Pérez-González A, Baptista R. Spider diversity (Arachnida: Araneae) in Atlantic Forest areas at Pedra Branca State Park, Rio de Janeiro, Brazil. Biodiversity Data Journal. 2016;4: e7055. doi: 10.3897/BDJ.4.e7055
27. Huber BA. Spider diversity and endemism in a South American hotspot: 20 new species of Carapoia (Araneae: Pholcidae) from Brazil's Atlantic Forest. Zootaxa. 2016;4177(1): 1–69. doi: 10.11646/zootaxa.4177.1.1 27811735
28. Rodrigues EN, Rodrigues PE, Mendonça MDS Jr. Spider species composition in the tree-shrub strata of riparian forests and its microhabitats in southern Brazil. Zoologia (Curitiba). 2016;33(3):1–17.
29. Nyffeler M, Birkhofer K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 2017;104(3–4): 30.
30. Raub F, Höfer H, Scheuermann L. Spider (Arachnida, Araneae) diversity in secondary and old‐growth southern Atlantic forests of Paraná state, Brazil. Ecology. 2017;98(7): 1975–1975. doi: 10.1002/ecy.1854 28403544
31. Olive CW. Foraging Specialization in Orb‐Weaving Spiders. Ecology. 1980;61(5): 1133–1144.
32. Nyffeler M. Prey selection of spiders in the field. J Arachnol. 1999;27: 317–324.
33. Yamanoi T, Miyashita T. Foraging strategy of nocturnal orb-web spiders (Araneidae: Neoscona) with special reference to the possibility of beetle specialization by N. punctigera. Acta Arachnol. 2005;54(1), 13–19.
34. Novak T, Tkavc T, Kuntner M, Arnet AE, Delakorda SL, Perc M, et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecol 2010;36: 522–529.
35. Herberstein ME, Elgar MA. Foraging strategies of Eriophora transmarina and Nephila plumipes (Araneae: Araneoidea): Nocturnal and diurnal orb‐weaving spiders. Aust J Ecol. 1994;19(4), 451–457.
36. Herberstein M. E. Niche partitioning in three sympatric web-building spiders (Araneae: Linyphiidae). Bull. Br. Arachnol. Soc. 1997;10 (7): 233–238.
37. Oxford GS, Gillespie RG. Evolution and ecology of spider coloration. Annu Rev Entomol. 1998;43(1): 619–643.
38. Hénaut Y, García-Ballinas JA, Alauzet C. Variations in web construction in Leucauge venusta (Araneae, Tetragnathidae). J Arachnol. 2006;34(1): 234–240.
39. Harwood JD, Obrycki JJ. Web-construction behavior of linyphiid spiders (Araneae, Linyphiidae): competition and co-existence within a generalist predator guild. J Insect Behav. 2005;18(5): 593–607.
40. Cumming MS, Wesołowska W. Habitat separation in a species‐rich assemblage of jumping spiders (Araneae: Salticidae) in a suburban study site in Zimbabwe. J Zoo. 2004;262(1): 1–10.
41. Portela E, Willemart RH, Gasnier TR. Soil type preference and the coexistence of two species of wandering spiders (Ctenus amphora and C. crulsi: Ctenidae) in a rainforest in Central Amazonia. J Arachnol. 2013;41(1), 85–87.
42. Souza HS, Messas YF, de Oliveira Gonzaga M, Vasconcellos-Neto J. Substrate selection and spatial segregation by two congeneric species of Eustala (Araneae: Araneidae) in southeastern Brazil. J Arachnol. 2015;43(1), 59–66.
43. Frick H, Kropf C, Nentwig W. Laboratory temperature preferences of the wolf spider Pardosa riparia (Araneae: Lycosidae). Arachnology. 2007;14(1), 45–49.
44. Mammola S, Isaia M. Niche differentiation in Meta bourneti and M. menardi (Araneae, Tetragnathidae) with notes on the life history. Int J Speleol. 2014;43(3): 343–353.
45. Mammola S, Piano E, Isaia M. Step back! Niche dynamics in cave-dwelling predators. Acta Oecol. 2016;75: 35–42.
46. Cardoso JCF, Michalko R, Gonzaga MO. Specific parasites indirectly influence niche occupation of non-hosts community members. Oecologia. 2018;188(2): 343–353. doi: 10.1007/s00442-018-4163-x 29785698
47. Černecká Ľ, Michalko R, Krištín A. Abiotic factors and biotic interactions jointly drive spider assemblages in nest-boxes in mixed forests. J Arachnol. 2017;45(2): 213–223.
48. Turner M, Polis GA. 1979. Patterns of co-existence in a guild of raptorial spiders. J Animal Ecol. 1985;48(2): 509–520.
49. Uetz GW. 1977. Coexistence in a guild of wandering spiders. J. Animal Ecol. 1973;46(2): 531–541.
50. Gasnier TR, Höfer H. Patterns of abundance of four species of wandering spiders (Ctenidae, Ctenus) in a forest in central Amazonia. J Arachnol. 2001;29(1): 95–104.
51. Krumpálová Z, Tuf IH. Circadian rhythms of ground living spiders: mechanisms of coexistence strategy based on the body size. Pol J Ecol. 2013;61(3): 575–586.
52. Michalko R, Košulič O, Hula V, Surovcová K. Niche differentiation of two sibling wolf spider species, Pardosa lugubris and Pardosa alacris, along a canopy openness gradient. J. Arachnol. 2016;44(1), 46–51.
53. Pétillon J, Leroy B, Djoudi EA, Vedel V. Small and large spatial scale coexistence of ctenid spiders in a neotropical forest (French Guiana). Tropical zoology. 2018;31(2): 85–98.
54. Santos AJ, Brescovit AD. A revision of the Neotropical species of the lynx spider genus Peucetia Thorell 1869 (Araneae: Oxyopidae). Insect Syst Evol. 2003;34(1): 95–116.
55. World Spider Catalog. World Spider Catalog. Natural History Museum Bern. Version 20.0; 2019. [cited 2019 May 20]. Available from: http://wsc.nmbe.ch
56. Vasconcellos‐Neto J, Romero GQ, Santos AJ, Dippenaar‐Schoeman AS. Associations of spiders of the genus Peucetia (Oxyopidae) with plants bearing glandular hairs. Biotropica. 2007;39(2): 221–226.
57. Vasconcellos-Neto J, Messas YF, da Silva Souza H, Villanueva-Bonila GA, Romero GQ. Spider–plant interactions: an ecological approach. In: Viera C, Gonzaga MO, editors. Behaviour and Ecology of Spiders. Springer, Cham; 2017. pp. 165–214.
58. Villanueva-Bonilla GA, Safuan-Naide S, Vasconcellos-Neto João. Population dynamics and phenology of two congeneric and sympatric lynx spiders Peucetia rubrolineata Keyserling, 1877 and Peucetia flava Keyserling, 1877 (Oxyopidae). J. Nat. Hist. 2018; https://doi.org/10.1080/00222933.2018.1433339
59. Pinto HS. Clima na Serra do Japi. In: Morellato LPC, editors. História Natural da Serra do Japi: Ecologia e Preservação de uma Área Florestal no Sudeste do Brasil. Campinas: Editora da Unicamp/Fapesp; 1992. pp. 30–38.
60. Romero GQ, Vasconcellos-Neto J. Flowering phenology, seed set and arthropod guilds in Trichogoniopsis adenantha (Asteraceae) in south-east Brazil. Rev Brasil. Bot. 2005;28:171–178.
61. Villanueva-Bonilla GA, Vasconcellos-Neto J. Population dynamics and phenology of the wall crab spider Selenops cocheleti Simon, 1880 (Araneae: Selenopidae) in Southeastern Brazil. Stud Neotrop Fauna Environ. 2016;51(3):215–230
62. Almeida AM. Padrões de ocorrência em insetos endófagos associados com capítulos de Trichogoniopsis adenantha (DC) (Asteraceae). M.Sc. Thesis, Universidade Estadual de Campinas (UNICAMP). 1997
63. Romero GQ. Estudo experimental da associação de Runcinioides argenteus (Araneae, Thomisidae) em Trichogoniopsis adenantha (DC) (Asteraceae). M.Sc. Thesis, Universidade Estadual de Campinas. 2001.
64. Chao A, Chazdon RL, Colwell RK, Shen TJ. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology letters. 2005;8(2), 148–159.
65. Hope A. C. A. A simplified Monte Carlo significance test procedure. J. Roy, Statist. Soc. B 1968;30, 582–598.
66. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2019. Available from: http://www.R-project.org/
67. Nieto-Castañeda IG, Jiménez-Jiménez ML. Possible niche differentiation of two desert wandering spiders of the genus Syspira (Araneae: Miturgidae). J. Arachnol. 2009;37(3): 299–305.
68. Suwa M. Space partitioning among the wolf spider Pardosa amentata species group in Hokkaido, Japan. Res Popul Ecol (Kyoto). 1986;28(2): 231–252.
69. Carrel J. Ecology of Two Burrowing Wolf Spiders (Araneae: Lycosidae) Syntopic in Florida Scrub: Burrow/Body Size Relationships and Habitat Preferences. J. Kans. Entomol. Soc. 2003;76(1): 16–30.
70. Romero GQ, Vasconcellos-Neto J. Natural history of Misumenops argenteus (Thomisidae): seasonality and diet on Trichogoniopsis adenantha (Asteraceae). J Arachnol. 2003;31: 297–304.
71. Romero GQ, Souza JC, Vasconcellos-Neto J. Anti-herbivore protection by mutualistic spiders and the role of plant glandular trichomes. Ecology 2008;89: 3105–3115.
72. Langellotto GA, Denno RF. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia. 2004;139(1): 1–10. doi: 10.1007/s00442-004-1497-3 14872336
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis