Genomic characterisation of perinatal Western Australian Streptococcus agalactiae isolates
Autoři:
Lucy L. Furfaro aff001; Barbara J. Chang aff002; Charlene M. Kahler aff002; Matthew S. Payne aff001
Působiště autorů:
The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
aff001; The School of Biomedical Sciences, The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Perth, Western Australia, Australia
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223256
Souhrn
As a leading cause of neonatal sepsis, Streptococcus agalactiae, commonly known as Group B Streptococcus, is a major neonatal pathogen. Current global screening practices employ risk- or culture-based protocols for detection of these organisms. In Western Australia (WA), universal culture-based screening is provided, with subsequent intrapartum antibiotic prophylaxis for all S. agalactiae-positive women during labour. Widespread antibiotic exposure is not ideal and this is one of the factors driving development of vaccines against S. agalactiae. Vaccine candidates have focused on the capsule, surface proteins and pilus types, however, capsule serotypes are known to vary geographically. The aim of this study was to use genome sequencing to gain an understanding of the circulating genotypes in WA, and to assess variations in the associated gene pools. We sequenced 141 antenatal carriage (vaginal/rectal) isolates and 10 neonatal invasive disease isolates from WA. Based on the global PubMLST database, the 151 strains were characterised into 30 sequence types, with clustering of these mainly into clonal complexes 1, 12, 17, 19 and 23. Of the genes encoding eleven surface proteins that were analysed, the most prevalent were fbp, lmb and scpB which were present in ≥ 98% of isolates. A cluster of non-haemolytic isolates, one of which was a neonatal invasive disease isolate, appeared to lack the entire cyl locus. Admixture analysis of population structure revealed evidence of genetic transfer among the WA isolates across structural groups. When compared against the PubMLST S. agalactiae data, WA isolates showed high levels of strain diversity with minimal apparent clustering. This is the first whole genome sequence study of WA S. agalactiae isolates and also represents the first addition of Australian isolate data to PubMLST. This report provides insight into the distribution and diversity of vaccine targets of S. agalactiae within Western Australia, indicating that the most appropriate capsular vaccine for this population would be the proposed pentavalent (Cps Ia, Ib, II, III and V) preparation, whilst vaccines targeting surface proteins should ideally utilise Fbp, Lmb and/or ScpB.
Klíčová slova:
Genetic loci – Population genetics – Vaccines – Islands – DNA sequence analysis – Sequence databases – Genomic databases – Streptococcus agalactiae
Zdroje
1. Verani JR, McGee L, Schrag SJ (2010) Prevention of perinanatal group B streptococcal disease: revised guidelines from CDC, 2010. Recommendations and Reports 59: 1–32.
2. Russell NJ, Seale AC, O’Driscoll M, O’Sullivan C, Bianchi-Jassir F, Gonzalez-Guarin J, et al. (2017) Maternal colonization with group B Streptococcus and serotype distribution worldwide: Systematic review and meta-analyses. Clinical Infectious Diseases 65: S100–S111. doi: 10.1093/cid/cix658 29117327
3. Dutra VG, Alves VM, Olendzki AN, Dias CA, de Bastos AF, Santos GO, et al. (2014) Streptococcus agalactiae in Brazil: serotype distribution, virulence determinants and antimicrobial susceptibility. BMC Infect Dis 14: 323. doi: 10.1186/1471-2334-14-323 24919844
4. Furfaro LL, Nathan EA, Chang BJ, Payne MS (2019) Group B streptococcus prevalence, serotype distribution and colonization dynamics in Western Australian pregnant women. Journal of Medical Microbiology.
5. Bohnsack JF, Whiting A, Gottschalk M, Dunn DM, Weiss R, Azimi PH, et al. (2008) Population structure of invasive and colonizing strains of Streptococcus agalactiae from neonates of six U.S. Academic Centers from 1995 to 1999. J Clin Microbiol 46: 1285–1291. doi: 10.1128/JCM.02105-07 18287314
6. Bellais S, Six A, Fouet A, Longo M, Dmytruk N, Glaser P, et al. (2012) Capsular switching in group B Streptococcus CC17 hypervirulent clone: a future challenge for polysaccharide vaccine development. J Infect Dis 206: 1745–1752. doi: 10.1093/infdis/jis605 23002446
7. Martins ER, Melo-Cristino J, Ramirez M (2010) Evidence for rare capsular switching in Streptococcus agalactiae. J Bacteriol 192: 1361–1369. doi: 10.1128/JB.01130-09 20023016
8. Meehan M, Cunney R, Cafferkey M (2014) Molecular epidemiology of group B streptococci in Ireland reveals a diverse population with evidence of capsular switching. Eur J Clin Microbiol Infect Dis 33: 1155–1162. doi: 10.1007/s10096-014-2055-5 24469423
9. Neemuchwala A, Teatero S, Athey TB, McGeer A, Fittipaldi N (2016) Capsular switching and other large-scale recombination events in invasive sequence type 1 group B Streptococcus. Emerg Infect Dis 22: 1941–1944. doi: 10.3201//eid2211.152064 27767925
10. Kong F, Lambertsen LM, Slotved HC, Ko D, Wang H, Gilbert GL (2008) Use of phenotypic and molecular serotype identification methods to characterize previously nonserotypeable group B streptococci. J Clin Microbiol 46: 2745–2750. doi: 10.1128/JCM.00189-08 18562579
11. Yao K, Poulsen K, Maione D, Rinaudo CD, Baldassarri L, Telford JL, et al. (2013) Capsular gene typing of Streptococcus agalactiae compared to serotyping by latex agglutination. J Clin Microbiol 51: 503–507. doi: 10.1128/JCM.02417-12 23196363
12. Furfaro LL, Chang BJ, Payne MS (2018) Perinatal Streptococcus agalactiae epidemiology and surveillance targets. Clinical Microbiology Reviews 31.
13. Lachenauer CS, Kasper DL, Shimada J, Ichiman Y, Ohtsuka H, Kaku M, et al. (1999) Serotypes VI and VIII predominate among group B streptococci isolated from pregnant Japanese women. J Infect Dis 179.
14. Jones N, Bohnsack JF, Takahashi S, Oliver KA, Chan MS, Kunst F, et al. (2003) Multilocus sequence typing system for group B streptococcus. J Clin Microbiol 41: 2530–2536. doi: 10.1128/JCM.41.6.2530-2536.2003 12791877
15. Da Cunha V, Davies MR, Douarre PE, Rosinski-Chupin I, Margarit I, Spinali S, et al. (2014) Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline. Nat Commun 5: 4544. doi: 10.1038/ncomms5544 25088811
16. Furfaro LL, Chang BJ, Payne MS (2017) A novel one-step real-time multiplex PCR assay to detect Streptococcus agalactiae presence and serotypes Ia, Ib, and III. Diagnostic Microbiology and Infectious Disease 89: 7–12. doi: 10.1016/j.diagmicrobio.2017.06.003 28669679
17. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, Tomita T, et al. (2014) SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 6: 90. doi: 10.1186/s13073-014-0090-6 25422674
18. Jolley KA, Maiden MC (2010) BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11: 595. doi: 10.1186/1471-2105-11-595 21143983
19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19.
20. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29: 1072–1075. doi: 10.1093/bioinformatics/btt086 23422339
21. Kapatai G, Patel D, Efstratiou A, Chalker VJ (2017) Comparison of molecular serotyping approaches of Streptococcus agalactiae from genomic sequences. BMC Genomics 18: 429. doi: 10.1186/s12864-017-3820-5 28571573
22. Creti R, Fabretti F, Orefici G, von Hunolstein C (2004) Multiplex PCR assay for direct identification of group B streptococcal alpha-protein-like protein genes. J Clin Microbiol 42: 1326–1329. doi: 10.1128/JCM.42.3.1326-1329.2004 15004110
23. Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9: 539. doi: 10.1186/1471-2105-9-539 19087322
24. Cheng L, Connor TR, Siren J, Aanensen DM, Corander J (2013) Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol 30: 1224–1228. doi: 10.1093/molbev/mst028 23408797
25. Seale AC, Koech AC, Sheppard AE, Barsosio HC, Langat J, Anyango E, et al. (2016) Maternal colonization with Streptococcus agalactiae and associated stillbirth and neonatal disease in coastal Kenya. Nat Microbiol 1: 16067. doi: 10.1038/nmicrobiol.2016.67 27572968
26. Flores AR, Galloway-Pena J, Sahasrabhojane P, Saldana M, Yao H, Su X, et al. (2015) Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes. Proc Natl Acad Sci U S A 112: 6431–6436. doi: 10.1073/pnas.1504725112 25941374
27. Teatero S, McGeer A, Low DE, Li A, Demczuk W, Martin I, et al. (2014) Characterization of invasive group B streptococcus strains from the greater Toronto area, Canada. J Clin Microbiol 52: 1441–1447. doi: 10.1128/JCM.03554-13 24554752
28. Mehershahi KS, Hsu LY, Koh TH, Chen SL (2015) Complete genome sequence of Streptococcus agalactiae serotype III, multilocus sequence type 283 strain SG-M1. Genome Announc 3.
29. Singh P, Springman AC, Davies HD, Manning SD (2012) Whole-genome shotgun sequencing of a colonizing multilocus sequence type 17 Streptococcus agalactiae strain. J Bacteriol 194: 6005. doi: 10.1128/JB.01378-12 23045509
30. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. doi: 10.1093/molbev/msw054 27004904
31. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44: W242–245. doi: 10.1093/nar/gkw290 27095192
32. Lin SM, Zhi Y, Ahn KB, Lim S, Seo HS (2018) Status of group B streptococcal vaccine development. Clin Exp Vaccine Res 7: 76–81. doi: 10.7774/cevr.2018.7.1.76 29399583
33. Heath PT (2016) Status of vaccine research and development of vaccines for GBS. Vaccine 34: 2876–2879. doi: 10.1016/j.vaccine.2015.12.072 26988258
34. Le Doare K, Heath PT (2013) An overview of global GBS epidemiology. Vaccine 31 Suppl 4: D7–12.
35. Madrid L, Seale AC, Kohli-Lynch M, Edmond KM, Lawn JE, Heath PT, et al. (2017) Infant group B Streptococcal disease incidence and serotypes worldwide: Systematic review and meta-analyses. Clinical Infectious Diseases 65: S160–S172. doi: 10.1093/cid/cix656 29117326
36. Eskandarian N, Ismail Z, Neela V, van Belkum A, Desa MN, Amin Nordin S (2015) Antimicrobial susceptibility profiles, serotype distribution and virulence determinants among invasive, non-invasive and colonizing Streptococcus agalactiae (group B streptococcus) from Malaysian patients. Eur J Clin Microbiol Infect Dis 34: 579–584. doi: 10.1007/s10096-014-2265-x 25359580
37. Suhaimi MES, Desa MNM, Eskandarian N, Pillay SG, Ismail Z, Neela VK, et al. (2017) Characterization of a Group B Streptococcus infection based on the demographics, serotypes, antimicrobial susceptibility and genotypes of selected isolates from sterile and non-sterile isolation sites in three major hospitals in Malaysia. J Infect Public Health 10: 14–21. doi: 10.1016/j.jiph.2016.01.009 27095302
38. Taylor K (2006) A study of group B streptococcus in Brisbane: the epidemiology, detection by PCR assay and serovar prevalence. Masters Thesis.
39. Zhao Z, Kong F, Zeng X, Gidding HF, Morgan J, Gilbert GL (2008) Distribution of genotypes and antibiotic resistance genes among invasive Streptococcus agalactiae (group B streptococcus) isolates from Australasian patients belonging to different age groups. Clin Microbiol Infect 14: 260–267. doi: 10.1111/j.1469-0691.2007.01914.x 18190584
40. Zeng X, Kong F, Wang H, Darbar A, Gilbert GL (2006) Simultaneous detection of nine antibiotic resistance-related genes in Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization assay. Antimicrob Agents Chemother 50: 204–209. doi: 10.1128/AAC.50.1.204-209.2006 16377687
41. Slotved HC, Kong F, Lambertsen L, Sauer S, Gilbert GL (2007) Serotype IX, a proposed new Streptococcus agalactiae serotype. J Clin Microbiol 45: 2929–2936. doi: 10.1128/JCM.00117-07 17634306
42. Ko DW, Zurynski Y, Gilbert GL (2015) Group B streptococcal disease and genotypes in Australian infants. J Paediatr Child Health.
43. Gudjonsdottir MJ, Hentz E, Berg S, Backhaus E, Elfvin A, Kawash S, et al. (2015) Serotypes of group B streptococci in western Sweden and comparison with serotypes in two previous studies starting from 1988. BMC Infect Dis 15: 507. doi: 10.1186/s12879-015-1266-4 26553333
44. Gherardi G, Imperi M, Baldassarri L, Pataracchia M, Alfarone G, Recchia S, et al. (2007) Molecular epidemiology and distribution of serotypes, surface proteins, and antibiotic resistance among Group B Streptococci in Italy. Journal of Clinical Microbiology 45: 2909–2916. doi: 10.1128/JCM.00999-07 17634303
45. Hery-Arnaud G, Bruant G, Lanotte P, Brun S, Picard B, Rosenau A, et al. (2007) Mobile genetic elements provide evidence for a bovine origin of clonal complex 17 of Streptococcus agalactiae. Appl Environ Microbiol 73: 4668–4672. doi: 10.1128/AEM.02604-06 17526784
46. Lartigue MF, Hery-Arnaud G, Haguenoer E, Domelier AS, Schmit PO, van der Mee-Marquet N, et al. (2009) Identification of Streptococcus agalactiae isolates from various phylogenetic lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 47: 2284–2287. doi: 10.1128/JCM.00175-09 19403759
47. Luan SL, Granlund M, Sellin M, Lagergard T, Spratt BG, Norgren M (2005) Multilocus sequence typing of Swedish invasive group B streptococcus isolates indicates a neonatally associated genetic lineage and capsule switching. J Clin Microbiol 43: 3727–3733. doi: 10.1128/JCM.43.8.3727-3733.2005 16081902
48. van der Mee-Marquet N, Fourny L, Arnault L, Domelier AS, Salloum M, Lartigue MF, et al. (2008) Molecular characterization of human-colonizing Streptococcus agalactiae strains isolated from throat, skin, anal margin, and genital body sites. J Clin Microbiol 46: 2906–2911. doi: 10.1128/JCM.00421-08 18632904
49. Diedrick MJ, Flores AE, Hillier SL, Creti R, Ferrieri P (2010) Clonal analysis of colonizing group B Streptococcus, serotype IV, an emerging pathogen in the United States. J Clin Microbiol 48: 3100–3104. doi: 10.1128/JCM.00277-10 20610684
50. Campisi E, Rinaudo CD, Donati C, Barucco M, Torricelli G, Edwards MS, et al. (2016) Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages. Sci Rep 6: 29799. doi: 10.1038/srep29799 27411639
51. Lyhs U, Kulkas L, Katholm J, Waller KP, Saha K, Tomusk RJ, et al. (2016) Streptococcus agalactiae serotype IV in humans and cattle, Northern Europe. Emerg Infect Dis 22: 2097–2103. doi: 10.3201/eid2212.151447 27869599
52. Florindo C, Damiao V, Silvestre I, Farinha C, Rodrigues F, Nogueira F, et al. (2014) Epidemiological surveillance of colonising group B Streptococcus epidemiology in the Lisbon and Tagus Valley regions, Portugal (2005 to 2012): emergence of a new epidemic type IV/clonal complex 17 clone. Euro Surveill 19.
53. Ferrieri P, Lynfield R, Creti R, Flores AE (2013) Serotype IV and invasive group B Streptococcus disease in neonates, Minnesota, USA, 2000–2010. Emerg Infect Dis 19: 551–558. doi: 10.3201/eid1904.121572 23628320
54. Teatero S, McGeer A, Li A, Gomes J, Seah C, Demczuk W, et al. (2015) Population structure and antimicrobial resistance of invasive serotype IV group B Streptococcus, Toronto, Ontario, Canada. Emerg Infect Dis 21: 585–591. doi: 10.3201/eid2014.140759 25811284
55. Dangor Z, Kwatra G, Izu A, Adrian P, Cutland CL, Velaphi S, et al. (2015) Association between maternal Group B Streptococcus surface-protein antibody concentrations and invasive disease in their infants. Expert Rev Vaccines 14: 1651–1660. doi: 10.1586/14760584.2015.1085307 26364978
56. Larsson C, Lindroth M, Nordin P, Stalhammar-Carlemalm M, Lindahl G, Krantz I (2006) Association between low concentrations of antibodies to protein alpha and Rib and invasive neonatal group B streptococcal infection. Arch Dis Child Fetal Neonatal Ed 91: F403–408. doi: 10.1136/adc.2005.090472 17056838
57. Kong F, Gowan S, Martin D, James G, Gilbert GL (2002) Molecular profiles of group B streptococcal surface protein antigen genes: relationship to molecular serotypes. J Clin Microbiol 40: 620–626. doi: 10.1128/JCM.40.2.620-626.2002 11825981
58. Rodriguez-Granger J, Spellerberg B, Asam D, Rosa-Fraile M (2015) Non-haemolytic & non-pigmented group B streptococcus, an infrequent cause of early onset neonatal sepsis. Pathogens and Disease.
59. Six A, Firon A, Plainvert C, Caplain C, Bouaboud A, Touak G, et al. (2016) Molecular characterization of nonhemolytic and nonpigmented Group B Streptococci responsible for human invasive infections. J Clin Microbiol 54: 75–82. doi: 10.1128/JCM.02177-15 26491182
60. Gendrin C, Vornhagen J, Armistead B, Singh P, Whidbey C, Merillat S, et al. (2017) A non-hemolytic Group B Streptococcus strain exhibits hypervirulence. The Journal of Infectious Diseases: jix646-jix646.
61. Herbert MA, Beveridge CJ, Saunders NJ (2004) Bacterial virulence factors in neonatal sepsis: group B streptococcus. Curr Opin Infect Dis 17: 225–229. 15166825
62. Liu GY, Nizet V (2004) Extracellular virulence factors of group B Streptococci. Front Biosci 9: 1794–1802. doi: 10.2741/1296 14977587
63. Rajagopal L (2009) Understanding the regulation of Group B Streptococcal virulence factors. Future Microbiol 4: 201–221. doi: 10.2217/17460913.4.2.201 19257847
64. Milligan TW, Baker CJ, Straus DC, Mattingly SJ (1978) Association of elevated levels of extracellular neuraminidase with clinical isolates of type III group B streptococci. Infect Immun 21: 738–746. 361576
65. Granlund M, Oberg L, Sellin M, Norgren M (1998) Identification of a novel insertion element, IS1548, in group B streptococci, predominantly in strains causing endocarditis. J Infect Dis 177: 967–976. doi: 10.1086/515233 9534970
66. Sheen TR, Jimenez A, Wang NY, Banerjee A, van Sorge NM, Doran KS (2011) Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract. J Bacteriol 193: 6834–6842. doi: 10.1128/JB.00094-11 21984789
67. Rinaudo CD, Rosini R, Galeotti CL, Berti F, Necchi F, Reguzzi V, et al. (2010) Specific involvement of pilus type 2a in biofilm formation in group B Streptococcus. PLoS One 5: e9216. doi: 10.1371/journal.pone.0009216 20169161
68. Lazzarin M, Mu R, Fabbrini M, Ghezzo C, Rinaudo CD, Doran KS, et al. (2017) Contribution of pilus type 2b to invasive disease caused by a Streptococcus agalactiae ST-17 strain. BMC Microbiology 17: 148. doi: 10.1186/s12866-017-1057-8 28673237
69. Springman AC, Lacher DW, Waymire EA, Wengert SL, Singh P, Zadoks RN, et al. (2014) Pilus distribution among lineages of group b streptococcus: an evolutionary and clinical perspective. BMC Microbiol 14.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis