#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Exercise intensity-dependent effects of arm and leg-cycling on cognitive performance


Autoři: Mathew Hill aff001;  Steven Walsh aff002;  Christopher Talbot aff002;  Michael Price aff001;  Michael Duncan aff001
Působiště autorů: Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom aff001;  Physical Activity & Life Sciences, University of Northampton, Northampton, United Kingdom aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224092

Souhrn

Physiological responses to arm and leg-cycling are different, which may influence psychological and biological mechanisms that influence post-exercise cognitive performance. The aim of this study was to determine the effects of maximal and submaximal (absolute and relative intensity matched) arm and leg-cycling on executive function. Thirteen males (age, 24.7 ± 5.0 years) initially undertook two incremental exercise tests to volitional exhaustion for arm-cycling (82 ± 18 W) and leg-cycling (243 ± 52 W) for the determination of maximal power output. Participants subsequently performed three 20-min constant load exercise trials: (1) arm-cycling at 50% of the ergometer-specific maximal power output (41 ± 9 W), (2) leg-cycling at 50% of the ergometer-specific maximal power output (122 ± 26 W), and (3) leg-cycling at the same absolute power output as the submaximal arm-cycling trial (41 ± 9 W). An executive function task was completed before, immediately after and 15-min after each exercise test. Exhaustive leg-cycling increased reaction time (p < 0.05, d = 1.17), while reaction time reduced following exhaustive arm-cycling (p < 0.05, d = -0.62). Improvements in reaction time were found after acute relative intensity arm (p < 0.05, d = -0.76) and leg-cycling (p < 0.05, d = -0.73), but not following leg-cycling at the same absolute intensity as arm-cycling (p > 0.05). Improvements in reaction time following arm-cycling were maintained for at least 15-min post exercise (p = 0.008, d = -0.73). Arm and leg-cycling performed at the same relative intensity elicit comparable improvements in cognitive performance. These findings suggest that individuals restricted to arm exercise possess a similar capacity to elicit an exercise-induced cognitive performance benefit.

Klíčová slova:

Cognitive psychology – Analysis of variance – Cognition – Exercise – Oxygen – Legs – Reaction time


Zdroje

1. Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, Sorrentino G. Effects of physical exercise on cognitive functioning and wellbeing: biological and psychological benefits. Front Psychol, 2018: 9; 509. doi: 10.3389/fpsyg.2018.00509 29755380

2. Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res, 2012: 1453; 87–101. doi: 10.1016/j.brainres.2012.02.068 22480735

3. Lambourne K, Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res, 2010: 1341; 12–24. doi: 10.1016/j.brainres.2010.03.091 20381468

4. McMorris T, Sproule J, Turner A, Hale BJ. Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiol Behav, 2011: 102(3–4); 421–428 doi: 10.1016/j.physbeh.2010.12.007 21163278

5. McMorris T, Hale BJ. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain Cogn, 2012: 80(3); 338–351. doi: 10.1016/j.bandc.2012.09.001 23064033

6. Audiffren M, Tomporowski PD, Zagrodnik J. Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task. Acta Psychologica, 2008; 129(3): 410–419. doi: 10.1016/j.actpsy.2008.09.006 18930445

7. Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sport Exerc. 2007: 39(4); 728–34.

8. Gomez‐Pinilla F, Vaynman S, Ying Z. Brain‐derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci, 2008: 28(11); 2278–2287. doi: 10.1111/j.1460-9568.2008.06524.x 19046371

9. Piepmeier AT, Etnier JL. Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. J Sport Health Sci, 2015: 4(1); 14–23.

10. Chmura J, Nazar K, Kaciuba-Uścilko H. Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. Int J Sports Med, 1994: 15(04); 172–176.

11. McMorris T, Hale BJ. Is there an acute exercise-induced physiological/ biochemical threshold which triggers increased speed of cognitive functioning? A meta-analytic investigation. J Sport Health Sci, 2015: 4(1); 4–13.

12. Faulkner J, Lambrick D, Kaufmann S, Stoner L. (2016). Effects of upright and recumbent cycling on executive function and prefrontal cortex oxygenation in young healthy men. J Phys Act Health, 2016: 13(8); 882–887. doi: 10.1123/jpah.2015-0454 27144465

13. Lucas SJ, Tzeng YC, Galvin SD, Thomas KN, Ogoh S, Ainslie PN. Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension, 2010: 55(3); 698–705. doi: 10.1161/HYPERTENSIONAHA.109.146290 20083726

14. Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, … Knecht S. High impact running improves learning. Neurobiol Learn Mem, 2007: 87(4); 597–609. doi: 10.1016/j.nlm.2006.11.003 17185007

15. Yerkes RM, Dodson JD. The relation of strength of stimulus to rapidity of habit‐formation. J Comp Neurol Psychol, 1908: 18(5); 459–482.

16. McMurray RG, Forsythe WA, Mar MH, Hardy CJ. Exercise intensity-related responses of beta-endorphin and catecholamines. Med Sci Sports Exerc, 1987: 19(6); 570–574. 2963188

17. Smith KJ, Ainslie PN. Regulation of cerebral blood flow and metabolism during exercise. Exp Physiol, 2017: 102(11); 1356–1371. doi: 10.1113/EP086249 28786150

18. Sawka MN. 6 Physiology of Upper Body Exercise. Exerc Sport Sci Rev, 1986: 14(1); 175–212.

19. Hill MW, Goss-Sampson M, Duncan MJ, Price MJ. The effects of maximal and submaximal arm crank ergometry and cycle ergometry on postural sway. Eur J Sport Sci, 2014: 14(8); 782–790. doi: 10.1080/17461391.2014.905985 24707964

20. Hill M, Pereira C, Talbot C, Oxford S, Price M. The effects of acute arm crank ergometry and cycle ergometry on postural sway and attentional demands during quiet bipedal standing. Exp Brain Res, 2015: 233(6); 1801–1809. doi: 10.1007/s00221-015-4252-6 25791429

21. Leicht CA, Goosey-Tolfrey VL, Bishop NC. Comparable Neutrophil Responses for Arm and Intensity-matched Leg Exercise. Med Sci Sport Exerc, 2017: 49(8); 1716–1723.

22. Leicht CA, Paulson TA, Goosey-Tolfrey VL, Bishop N. Arm and intensity-matched leg exercise induce similar inflammatory responses. Med Sci Sport Exerc, 2016: 48 (6); 1161–1168.

23. Dalsgaard MK, Volianitis S, Yoshiga CC, Dawson EA, Secher NH. Cerebral metabolism during upper and lower body exercise. J Appl Physiol, 2004: 97(5); 1733–1739.

24. Olesen J. Contralateral focal increase of cerebral blood flow in man during arm work. Brain, 1971: 94; 635–646. doi: 10.1093/brain/94.4.635 5132963

25. Endo K, Matsukawa K, Liang N, Nakatsuka C, Tsuchimochi H, Okamura H, et al. Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation. J Physiol Sci, 2013: 63; 287–298. doi: 10.1007/s12576-013-0267-6 23661275

26. Brümmer V, Schneider S, Abel T, Vogt T, Strueder HK. Brain cortical activity is influenced by exercise mode and intensity. Med Sci Spo Exerc, 2011: 43(10); 1863–1872.

27. Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology, 2010: 35(1); 70. doi: 10.1038/npp.2009.88 19657332

28. Byun K, Hyodo K, Suwabe K, Ochi G, Sakairi Y, Kato M, Soya H. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study. Neuroimage, 2014: 98; 336–345. doi: 10.1016/j.neuroimage.2014.04.067 24799137

29. Davies CTM, Few J, Foster KG, Sargeant AJ. Plasma catecholamine concentration during dynamic exercise involving different muscle groups. Eur J Appl Physiol Occup Physiol, 1974: 32(3); 195–206. doi: 10.1007/bf00423215 4836727

30. Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percep Psychophys, 1974: 16(1); 143–149.

31. Hillman CH, Motl RW, Pontifex MB, Posthuma D, Stubbe JH, Boomsma DI, De Geus EJ. Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol, 2006: 25(6); 678. doi: 10.1037/0278-6133.25.6.678 17100496

32. Pontifex MB, Hillman CH. Neuroelectric and behavioral indices of interference control during acute cycling. Clinical Neurophysiol, 2007: 118(3); 570–580.

33. Davranche K, Tempest GD, Gajdos T, Radel R. Impact of physical and cognitive exertion on cognitive control. Frontiers in psychology, 2018: 9.

34. Duncan MJ, Dobell AP, Caygill CL, Eyre E, Tallis J. The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. Eur J Sport Sci, 2019: 19(1); 103–111. doi: 10.1080/17461391.2018.1508505 30102874

35. Nicolò A, Massaroni C, Passfield L. Respiratory frequency during exercise: the neglected physiological measure. Frontiers in Physiology, 2017: 8; 922. doi: 10.3389/fphys.2017.00922 29321742

36. Borg G. Psychophysical bases of perceived exertion. Med Sci Spo Exerc, 1982: 14(5); 377–381.

37. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc, 2009: 41, 3–13. doi: 10.1249/MSS.0b013e31818cb278 19092709

38. Coco M, Di Corrado D, Calogero RA, Perciavalle V, Maci T, Perciavalle V. Attentional processes and blood lactate levels. Brain Res, 2009: 1302; 205–211. doi: 10.1016/j.brainres.2009.09.032 19765561

39. McMorris T, Delves S, Sproule J, Lauder M, Hale B. Effect of incremental exercise on initiation and movement times in a choice response, whole body psychomotor task. Br J Sports Med, 2005: 39(8); 537–541. doi: 10.1136/bjsm.2004.014456 16046339

40. Perciavalle V, Maci T, Perciavalle V, Massimino S, Coco M. Working memory and blood lactate levels. Neurological Sci, 2015: 36(11); 2129–2136.

41. Sudo M, Komiyama T, Aoyagi R, Nagamatsu T, Higaki Y, Ando S. Executive function after exhaustive exercise. Eur J Appl Physiol, 2017: 117(10); 2029–2038. doi: 10.1007/s00421-017-3692-z 28780602

42. Zimmer P, Binnebößel S, Bloch W, Hübner ST, Schenk A, Predel H G, … Oberste M. Exhaustive exercise alters thinking times in a tower of London task in a time-dependent manner. Front Physiol, 2017: 7; 694. doi: 10.3389/fphys.2016.00694 28127289

43. González‐Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, Secher NH. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol, 2004: 557(1); 331–342.

44. Bhambhani Y, Malik R, Mookerjee S. Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol, 2007; 156(2): 196–202 doi: 10.1016/j.resp.2006.08.009 17045853

45. Rooks CR, Thom NJ, McCully KK, Dishman RK. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Progress Neurobiol, 2010: 92(2); 134–150.

46. Subudhi AW, Dimmen AC, Roach RC. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol, 2007: 103(1); 177–83. doi: 10.1152/japplphysiol.01460.2006 17431082

47. Mekari S, Fraser S, Bosquet L, Bonnéry C, Labelle V, Pouliot P, … Bherer L. The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults. Eur J Appl Phsyiol, 2015: 115(10); 2189–2197.

48. Raichle M, Hornbein T. The high-altitude brain. In: Hornbein T, Schoene R (eds) High ltitude: an exploration of human adaptation. 2001: Marcel Dekker, New York, pp 377–423

49. Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Progress Neurobiol, 2000: 61(4); 397–414.

50. Dalsgaard MK, Ide K, Cai Y, Quistorff B, Secher NH. The intent to exercise influences the cerebral O2/carbohydrate uptake ratio in humans. J Physiol, 2002: 540(2); 681–689.

51. Pandolf KB, Billings DS, Drolet LL, Pimental NA, Sawka MN. Differentiated ratings of perceived exertion and various physiological responses during prolonged upper and lower body exercise. Eur J Appl Physiol Occup Physiol, 1984: 53(1); 5–11. 6542501

52. Labelle V, Bosquet L, Mekary S, Bherer L. Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain Cog, 2013: 1(1); 10–17.

53. Ogoh S, Ainslie PN. Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol, 2009: 107(5); 1370–1380. doi: 10.1152/japplphysiol.00573.2009 19729591

54. Kahneman D. Attention and effort (Vol. 1063). 2013: Englewood Cliffs, NJ: Prentice-Hall.

55. Tomporowski PD, Ellis NR. Effects of exercise on cognitive processes: A review. Psychol Bull, 1986: 99(3); 338.

56. Kjaer M. Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training. Int J Sports Med, 1989: 10(1); 2–15. 2649444


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#