No effect of triple-pulse TMS medial to intraparietal sulcus on online correction for target perturbations during goal-directed hand and foot reaches
Autoři:
Daniel S. Marigold aff001; Kim Lajoie aff001; Tobias Heed aff002
Působiště autorů:
Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
aff001; Biopsychology and Cognitive Neuroscience, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
aff002; Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223986
Souhrn
Posterior parietal cortex (PPC) is central to sensorimotor processing for goal-directed hand and foot movements. Yet, the specific role of PPC subregions in these functions is not clear. Previous human neuroimaging and transcranial magnetic stimulation (TMS) work has suggested that PPC lateral to the intraparietal sulcus (IPS) is involved in directing the arm, shaping the hand, and correcting both finger-shaping and hand trajectory during movement. The lateral localization of these functions agrees with the comparably lateral position of the hand and fingers within the motor and somatosensory homunculi along the central sulcus; this might suggest that, in analogy, (goal-directed) foot movements would be mediated by medial portions of PPC. However, foot movement planning activates similar regions for both hand and foot movement along the caudal-to-rostral axis of PPC, with some effector-specificity evident only rostrally, near the central regions of sensorimotor cortex. Here, we attempted to test the causal involvement of PPC regions medial to IPS in hand and foot reaching as well as online correction evoked by target displacement. Participants made hand and foot reaches towards identical visual targets. Sometimes, the target changed position 100–117 ms into the movement. We disturbed cortical processing over four positions medial to IPS with three pulses of TMS separated by 40 ms, both during trials with and without target displacement. We timed TMS to disrupt reach execution and online correction. TMS did not affect endpoint error, endpoint variability, or reach trajectories for hand or foot. While these negative results await replication with different TMS timing and parameters, we conclude that regions medial to IPS are involved in planning, rather than execution and online control, of goal-directed limb movements.
Klíčová slova:
Functional magnetic resonance imaging – Body limbs – Fingers – Transcranial magnetic stimulation – Ellipses – Feet – Toes
Zdroje
1. Andersen RA, Cui H. Intention, action planning, and decision making in parietal-frontal circuits. Neuron. 2009;63: 568–583. doi: 10.1016/j.neuron.2009.08.028 19755101
2. Vesia M, Crawford JD. Specialization of reach function in human posterior parietal cortex. Exp Brain Res. 2012;221: 1–18. doi: 10.1007/s00221-012-3158-9 22777102
3. Filimon F. Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing. Neuroscientist. 2010;16: 388–407. doi: 10.1177/1073858410375468 20817917
4. Heed T, Beurze SM, Toni I, Röder B, Medendorp WP. Functional rather than effector-specific organization of human posterior parietal cortex. J Neurosci. 2011;31: 3066–3076. doi: 10.1523/JNEUROSCI.4370-10.2011 21414927
5. Leoné FTM, Heed T, Toni I, Medendorp WP. Understanding effector selectivity in human posterior parietal cortex by combining information patterns and activation measures. J Neurosci. 2014;34: 7102–7112. doi: 10.1523/JNEUROSCI.5242-13.2014 24849346
6. Cunningham DA, Machado A, Yue GH, Carey JR, Plow EB. Functional somatotopy revealed across multiple cortical regions using a model of complex motor task. Brain Res. 2013;1531: 25–36. doi: 10.1016/j.brainres.2013.07.050 23920009
7. Heed T, Leone FTM, Toni I, Medendorp WP. Functional versus effector-specific organization of the human posterior parietal cortex: revisited. J Neurophysiol. 2016;116: 1885–1899. doi: 10.1152/jn.00312.2014 27466132
8. Rijntjes M, Dettmers C, Büchel C, Kiebel S, Frackowiak RSJ, Weiller C. A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci. 1999;19: 8043–8048. 10479704
9. Miall RC, Wolpert DM. Forward models for physiological motor control. Neural Net. 1996;9: 1265–1279.
10. Mulliken GH, Musallam S, Andersen RA. Forward estimation of movement state in posterior parietal cortex. Proc Natl Acad Sci USA. 2008;105: 8170–8177. doi: 10.1073/pnas.0802602105 18499800
11. Wolpert DM, Goodbody SJ, Husain M. Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci. 1998;1: 529–533. doi: 10.1038/2245 10196553
12. Buneo CA, Andersen RA. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia. 2006; 44: 2594–2606. doi: 10.1016/j.neuropsychologia.2005.10.011 16300804
13. Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci. 1999;2: 563–567. doi: 10.1038/9219 10448222
14. Drew T, Marigold DS. Taking the next step: cortical contributions to the control of locomotion. Curr Opin Neurobiol. 2015;33: 25–33. doi: 10.1016/j.conb.2015.01.011 25643847
15. Marigold DS, Drew T. Posterior parietal cortex estimates the relationship between object and body location during locomotion. eLife. 2017;6:e28143. doi: 10.7554/eLife.28143 29053442
16. Marigold DS, Andujar J-E, Lajoie K, Drew T. Motor planning of locomotor adaptations on the basis of vision: the role of the posterior parietal cortex. Prog Brain Res. 2011;188: 83–100. doi: 10.1016/B978-0-444-53825-3.00011-5 21333804
17. Danckert J, Ferber S, Goodale MA. Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. Eur J Neurosci. 2008;28: 1696–1704. doi: 10.1111/j.1460-9568.2008.06460.x 18973586
18. Luauté J, Schwartz S, Rossetti Y, Spiridon M, Rode G, Boisson D, et al. Dynamic changes in brain activity during prism adaptation. J Neurosci. 2009;29: 169–178. doi: 10.1523/JNEUROSCI.3054-08.2009 19129395
19. Archambault PS, Caminiti R, Battaglia-Mayer A. Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex. Cereb Cortex. 2009;19: 2848–2864. doi: 10.1093/cercor/bhp058 19359349
20. Archambault PS, Ferrari-Toniolo S, Battaglia-Mayer A. Online control of hand trajectory and evolution of motor intention in the parietofrontal system. J Neurosci. 2011;31: 742–752. doi: 10.1523/JNEUROSCI.2623-10.2011 21228183
21. Marigold DS, Drew T. Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol. 2011;105: 2457–2470. doi: 10.1152/jn.00992.2010 21411565
22. Gréa H, Pisella L, Rossetti Y, Desmurget M, Tilikete C, Grafton S, et al. A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia. 2002;40: 2471–2480. doi: 10.1016/s0028-3932(02)00009-x 12417474
23. Tunik E, Frey SH, Grafton ST. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci. 2005;8: 505–511. doi: 10.1038/nn1430 15778711
24. Reichenbach A, Bresciani J-P, Peer A, Bülthoff HH, Thielscher A. Contributions of the PPC to online control of visually guided reaching movements assessed with fMRI-guided TMS. Cereb Cortex. 2011;21: 1602–1612. doi: 10.1093/cercor/bhq225 21084453
25. Sandrini M, Umiltà C, Rusconi E. The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues. Neurosci Biobehav Rev. 2011;35: 516–536. doi: 10.1016/j.neubiorev.2010.06.005 20599555
26. Hagler DJ Jr, Riecke L, Sereno MI. Parietal and superior frontal visuospatial maps activated by pointing and saccades. NeuroImage. 2007;35: 1562–1577. doi: 10.1016/j.neuroimage.2007.01.033 17376706
27. Levy I, Schluppeck D, Heeger DJ, Glimcher PW. Specificity of human cortical areas for reaches and saccades. J Neurosci. 2007;27: 4687–4696. doi: 10.1523/JNEUROSCI.0459-07.2007 17460081
28. Schluppeck D, Glimcher P, Heeger DJ. Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol. 2005;94: 1372–1384. doi: 10.1152/jn.01290.2004 15817644
29. Silver MA, Ress D, Heeger DJ. Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol. 2005;94: 1358–1371. doi: 10.1152/jn.01316.2004 15817643
30. Filimon F, Nelson JD, Huang R-S, Sereno MI. Multiple parietal reach regions in humans: cortical representations for visual and proprioceptive feedback during on-line reaching. J Neurosci. 2009;29: 2961–2971. doi: 10.1523/JNEUROSCI.3211-08.2009 19261891
31. Prado J, Clavagnier S, Otzenberger H, Scheiber C, Kennedy H, Perenin MT. Two cortical systems for reaching in central and peripheral vision. Neuron. 2005;48: 849–858. doi: 10.1016/j.neuron.2005.10.010 16337921
32. Vesia M, Prime SL, Yan X, Sergio LE, Crawford JD. Specificity of human parietal saccade and reach regions during transcranial magnetic stimulation. J Neurosci. 2010;30: 13053–13065. doi: 10.1523/JNEUROSCI.1644-10.2010 20881123
33. Blangero A, Menz MM, McNamara A, Binkofski F. Parietal modules for reaching. Neuropsychologia. 2009;47: 1500–1507. doi: 10.1016/j.neuropsychologia.2008.11.030 19109986
34. Glover S, Miall RC, Rushworth MFS. Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J Cogn Neurosci. 2005;17: 124–136. doi: 10.1162/0898929052880066 15701244
35. Le A, Vesia M, Yan X, Crawford JD, Niemeier M. Parietal area BA7 integrates motor programs for reaching, grasping, and bimanual coordination. J Neurophysiol. 2017;117: 624–636. doi: 10.1152/jn.00299.2016 27832593
36. Striemer CL, Chouinard PA, Goodale MA. Programs for action in superior parietal cortex: a triple-pulse TMS investigation. Neuropsychologia. 2011;49: 2391–2399. doi: 10.1016/j.neuropsychologia.2011.04.015 21539851
37. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, the Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120: 2008–2039. doi: 10.1016/j.clinph.2009.08.016 19833552
38. Schubert P, Kirchner M. Ellipse area calculations and their applicability in posturography. Gait Posture. 2014;39: 518–522. doi: 10.1016/j.gaitpost.2013.09.001 24091249
39. Davare M, Zénon A, Desmurget M, Olivier E. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude. Front Hum Neurosci. 2015;9.
40. Reichenbach A, Bresciani J-P, Bülthoff HH, Thielscher A. Reaching with the sixth sense: vestibular contributions to voluntary motor control in the human right parietal cortex. NeuroImage. 2016;124: 869–875. doi: 10.1016/j.neuroimage.2015.09.043 26424179
41. Scott SH. A Functional taxonomy of bottom-up sensory feedback processing for motor actions. Trends Neurosci. 2016;39: 512–526. doi: 10.1016/j.tins.2016.06.001 27378546
42. Serra C, Galletti C, Marco SD, Fattori P, Galati G, Sulpizio V, et al. Egomotion-related visual areas respond to active leg movements. Hum Brain Mapp. doi: 10.1002/hbm.24589 30924264
43. Beurze SM, de Lange FP, Toni I, Medendorp WP. Spatial and effector processing in the human parietofrontal network for reaches and saccades. J Neurophysiol. 2009;101: 3053–3062. doi: 10.1152/jn.91194.2008 19321636
44. Tosoni A, Galati G, Romani GL, Corbetta M. Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nat Neurosci. 2008;11: 1446–1453. doi: 10.1038/nn.2221 18997791
45. Fernandez-Ruiz J, Goltz HC, DeSouza JFX, Vilis T, Crawford JD. Human parietal “reach region” primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual-motor dissociation task. Cereb Cortex. 2007;17: 2283–2292. doi: 10.1093/cercor/bhl137 17215478
46. Medendorp WP, Goltz HC, Crawford JD, Vilis T. Integration of target and effector information in human posterior parietal cortex for the planning of action. J Neurophysiol. 2005;93: 954–962. doi: 10.1152/jn.00725.2004 15356184
47. Pellijeff A, Bonilha L, Morgan PS, McKenzie K, Jackson SR. Parietal updating of limb posture: an event-related fMRI study. Neuropsychologia. 2006;44: 2685–2690. doi: 10.1016/j.neuropsychologia.2006.01.009 16504223
48. Leib R, Mawase F, Karniel A, Donchin O, Rothwell J, Nisky I, et al. Stimulation of PPC affects the mapping between motion and force signals for stiffness perception but not motion control. J Neurosci. 2016;36: 10545–10559. doi: 10.1523/JNEUROSCI.1178-16.2016 27733607
49. Taoka M, Toda T, Iwamura Y. Representation of the midline trunk, bilateral arms, and shoulders in the monkey postcentral somatosensory cortex. Exp Brain Res. 1998;123: 315–322. doi: 10.1007/s002210050574 9860270
50. Breveglieri R, Galletti C, Gamberini M, Passarelli L, Fattori P. Somatosensory cells in area PEc of macaque posterior parietal cortex. J Neurosci. 2006;26: 3679–3684. doi: 10.1523/JNEUROSCI.4637-05.2006 16597722
51. Breveglieri R, Galletti C, Monaco S, Fattori P. Visual, somatosensory, and bimodal activities in the macaque parietal area PEc. Cereb Cortex. 2008;18, 806–816. doi: 10.1093/cercor/bhm127 17660487
52. Tunik E, Rice NJ, Hamilton A, Grafton ST. Beyond grasping: representation of action in human anterior intraparietal sulcus. NeuroImage. 2007;36: T77–T86. doi: 10.1016/j.neuroimage.2007.03.026 17499173
53. Zhang CY, Aflalo T, Revechkis B, Rosario ER, Ouellette D, Pouratian N, et al. Partially mixed selectivity in human posterior parietal association cortex. Neuron. 2017;95, 697–708. doi: 10.1016/j.neuron.2017.06.040 28735750
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs