Conspicuous and cryptic reef fishes from a unique and economically important region in the northern Red Sea
Autoři:
Calder J. Atta aff001; Darren J. Coker aff001; Tane H. Sinclair-Taylor aff001; Joseph D. DiBattista aff001; Alexander Kattan aff001; Alison A. Monroe aff001; Michael L. Berumen aff001
Působiště autorů:
Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
aff001; School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
aff002; Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
aff003; Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223365
Souhrn
Al Wajh Bank in the northern Red Sea contains an extensive coral reef system that potentially supports a novel fish community. The large (1500km2) and shallow (< 40m depth) lagoon experiences greater temperature and salinity fluctuations, as well as higher turbidity, than most other Red Sea reefs. Since these conditions often influence coral community structure and introduce physiological challenges to its resident organisms, changes in reef-associated fishes are expected. We present critical baseline data on fish biodiversity and benthic composition for the Al Wajh Bank. Underwater visual census of conspicuous fishes and standardized collections of cryptobenthic fishes were combined to provide a comprehensive assessment of these fish communities. We documented 153 fish species and operational taxonomic units, including undescribed species, within 24 families on reefs largely dominated by hard coral and soft sediment (39% and 32% respectively). The families Pomacentridae and Gobiidae contributed the most towards fish diversity and abundance. Bray-Curtis dissimilarity distances among sampled sites suggest a distinctive fish community within the lagoon, and coefficients of variation for each species show high variation in their distribution across the lagoon. Species accumulation curves predict that additional sampling would document many more species throughout Al Wajh. Our findings provide the most extensive biodiversity survey of fishes from this region to date and record the condition of the reef prior to major coastal development planned to occur in the near future.
Klíčová slova:
Community ecology – Species diversity – Coral reefs – Red Sea – Biodiversity – Fish physiology – Marine fish – Lagoons
Zdroje
1. Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC, Thomson RJ, et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature. 2013; 501: 539–542. doi: 10.1038/nature12529 24067714
2. Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L, Friedmanet M, et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature. 2018; 559: 392–395. doi: 10.1038/s41586-018-0273-1 29973726
3. Oldfeld M. The value of conserving genetic resources. Sunderland: Sinauer; 1989.
4. Schulze ED, Mooney HA. Biodiversity and ecosystem function. Berlin, Heidelberg, New York: Springer; 1993.
5. Randall A. Thinking about the value of biodiversity. Biodiversity and landscapes. Cambridge: Cambridge University Press; 1994. pp 271–286.
6. Rolston H. Creation: God and endangered species. Biodiversity and landscapes. Cambridge: Cambridge University Press; 1994. pp 47–60.
7. Duffy JE. Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ. 2009; 7: 437–444. https://doi.org/10.1890/070195
8. Myers N. The sinking ark: a new look at the problem of disappearing species. Oxford: Pergamon; 1979.
9. Ehrlich PR, Ehrlich AH. Extinction: The causes and consequences of the disappearance of species. New York: Random House; 1981.
10. Lawton JH, May RM. Extinction rates. Oxford: Oxford University Press; 1995.
11. Pimm SL, Russell GJ, Gittleman JL, Brooks TM. The future of biodiversity. Science. 1995; 269: 347–350. doi: 10.1126/science.269.5222.347 17841251
12. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomex E. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science. 2007; 318: 1737–1742. doi: 10.1126/science.1152509 18079392
13. Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JEM, et al. The status of coral reef ecology research in the Red Sea. Coral Reefs. 2013; 32: 737–748.
14. Ngugi DK, Antunes A, Brune A, Stingl U. Biogeography of pelagic bacterioplankton across an antagonistic temperature–salinity gradient in the Red Sea. Molecular Ecology. 2012; 21(2): 388–405. doi: 10.1111/j.1365-294X.2011.05378.x 22133021
15. Raitsos DE, Pradhan Y., Brewin R. J., Stenchikov G., Hoteit I. Remote sensing the phytoplankton seasonal succession of the Red Sea. PloS one. 2013; 8(6): e64909. doi: 10.1371/journal.pone.0064909 23755161
16. Sawall Y, Al-Sofyani A, Kürten B, Al-Aidaroos AM, Hoang BX, Marimuthu g, et al. Coral Communities, in Contrast to Fish Communities, Maintain a High Assembly Similarity along the Large Latitudinal Gradient along the Saudi Red Sea Coast. J Ecosys Ecograph. 2014; 3: 1–7.
17. Prakash PJ, Stenchikov G, Kalenderski S, Osipov S, and Bangalath H. The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos Chem Phys. 2015; 15: 199–222.
18. Rasheed M, Badran MI, Richter C, Huettel M. Effect of reef framework and bottom sediment on nutrient enrichment in a coral reef of the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser. 2002; 239: 277–285.
19. Lapin M and Barnes BV. Using the Landscape Ecosystem Approach to Assess Species and Ecosystem Diversity. Conserv Biol. 1995; 9: 1148–1158.
20. Roberts MB, Jones GP, McCormick MI, Munday PL, Neale S, Thorrold S, et al. Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea. Mar Pollut Bull. 2016; 105: 558–565. doi: 10.1016/j.marpolbul.2015.11.024 26608504
21. Cember RP. On The Sources, Formation, and Circulation of Red Sea Deep Water. Journal of Geophysical Research. 1988; 93: 8175–8191. https://doi.org/10.1029/JC093iC07p08175
22. Bruckner AW, Dempsey AC. The Status, Threats, and Resilience of Reef-Building Corals of the Saudi Arabian Red Sea. The Red Sea. 2015; 471–486.
23. Hamylton S. A comparison of spatially explicit and classic regression modelling of live coral cover using hyperspectral remote-sensing data in the Al Wajh lagoon, Red Sea. International Journal of Geographical Information Science. 2012; 26(11): 2161–2175. doi: 10.1080/13658816.2012.683195
24. Kotb M, Abdulaziz M, Al-agwan Z, Al-shaikh K, Al-yami H, Banajah A, et al. Status of Coral Reefs in the Red Sea and Gulf of Aden in 2004. Status of Coral Reefs of the World: 2004. 2004; 1: 137–151.
25. Gilchrist K. How 125 miles of coastline could add $4 billion and 35,000 jobs to Saudi Arabia’s economy. CNBC. 2 Aug. 2017. https://www.cnbc.com/2017/08/02/saudi-arabia-red-sea-tourism-project-4-billion-economy.html
26. Shahine A, Nereim V. Saudi Arabia Plans a Huge Red Sea Beach Tourism Project. Bloomberg. 31 Jul. 2017. https://www.bloomberg.com/news/articles/2017-08-01/saudi-arabia-unveils-plans-for-mega-red-sea-tourism-project
27. Brandl SJ, Goatley CH, Bellwood DR, Tornabene L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biological Reviews. 2018. doi: 10.1111/brv.12423 29736999
28. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, et al. Baselines and degradation of coral reefs in the Northern Line Islands. PLos One. 2008; 3: 1–11. https://doi.org/10.1371/journal.pone.0001548
29. Coker DJ, DiBattista JD, Sinclair-Taylor TH, Berumen ML. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea. Coral Reefs. 2018; 37: 193–199.
30. Ackerman JL, Bellwood DR. Reef fish assemblages: A re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser. 2000; 206: 227–237.
31. Meeker ND, Hutchinson SA, Ho L, Trede NS. Method for isolation of PCR-ready genomic DNA from zebrafish tissues. Biotechniques. 2007; 43: 610–614. doi: 10.2144/000112619 18072590
32. Ward RD, Hanner R, Hebert PDN. The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol. 2009; 74: 329–356. doi: 10.1111/j.1095-8649.2008.02080.x 20735564
33. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977; 74: 5463–5467. doi: 10.1073/pnas.74.12.5463 271968
34. Isari S, Pearman JK, Casas L, Michell CT, Curdia J, Berumen ML, et al. Exploring the larval fish community of the central Red Sea with an integrated morphological and molecular approach. PLos One. 2017; 12: 1–24. https://doi.org/10.1371/journal.pone.0182503
35. Bray JR, Curtis JT. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol Monograph. 1957; 27: 325–349.
36. Goatley CHR, González-Cabello A, Bellwood DR. Reef-scale partitioning of cryptobenthic fish assemblages across the Great Barrier Reef, Australia. Mar Ecol Prog Ser. 2016; 544: 271–280.
37. Gotelli NJ, Colwell RK. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters. 2001; 4(4): 379–391. https://doi-org.offcampus.lib.washington.edu/10.1046/j.1461-0248.2001.00230.x
38. Heltshe JF, Forrester NE. Estimating Species Richness Using the Jackknife Procedure. Biometrics. 1983; 39: 1–11. 6871338
39. Monroe AA, Ziegler M, Roik A, Röthig T, Hardenstine RS, Emms MA, et al. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLos One. 2018; 13(4): e0195814. doi: 10.1371/journal.pone.0195814 29672556
40. Khalaf MA, Kochzius M. Changes in trophic community structure of shore fishes at an industrial site in the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser. 2002; 239: 287–299.
41. Herler J, Hilgers H. A synopsis of coral and coral-rock associated gobies (Pisces: Gobiidae) from the Gulf of Aqaba, northern Red Sea. Ichthyol Aquat Biol. 2005; 10: 103–132.
42. Dirnwöber M, Herler J. Microhabitat specialisation and ecological consequences for coral gobies of the genus Gobiodon in the Gulf of Aqaba, northern Red Sea. Mar Ecol Prog Ser. 2007; 342: 265–275.
43. Golani D, Fricke R. Checklist of the Red Sea Fishes with delineation of the Gulf of Suez, Gulf of Aqaba, endemism and Lessepsian migrants. Zootaxa. 2018; 4509(1): 1–215. doi: 10.11646/zootaxa.4509.1.1 30485948
44. DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano‐Cortés DF, et al. A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr. 2016; 43: 423–439.
45. Tornabene L, Ahmadia GN, Berumen ML, Smith DJ, Jompa J, Pezold F. Evolution of microhabitat association and morphology in a diverse group of cryptobenthic coral reef fishes (Teleostei: Gobiidae: Eviota). Mol Phylogenetics Evol. 2013; 66: 391–400.
46. Shoepf V, Stat M, Falter JL, McCulloch MT. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep. 2015; 5: 1–14.
47. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, et al. Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science. 2003; 301(5635): 929–933. doi: 10.1126/science.1085046 12920289
48. Marshall PA, Baird AH. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs. 2000; 19: 155–163. https://doi.org/10.1007/s003380000086
49. Lasker HR. Zooxanthella densities within a Caribbean octocoral during bleaching and non-bleaching years. Coral Reefs. 2003; 22: 23–26.
50. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC. Ocean Warming Slows Coral Growth in the Central Red Sea. Science. 2010; 329: 322–325. doi: 10.1126/science.1190182 20647466
51. Fine M, Gildon H, Genin A. A coral reef refuge in the Red Sea. Global Change Biology. 2013; 19: 1–8. doi: 10.1111/gcb.12101
52. van der Merwe R, Röthig T, Voolstra CR, Ochsenkühn MA, Lattemann S, Amy GL. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment. Front Mar Sci. 2014; 1:1–58. https://doi.org/10.3389/fmars.2014.00058
53. Hawkins JP, Roberts CM. The growth of coastal tourism in the Red Sea: present and future effects on coral reefs. Ambio. 1994; 23: 503–508.
54. Mora C, Aburto-Oropeza O, Bocos AA, Ayotte PM, Banks S, Bauman AG, et al. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes. PLos One. 2011; 9: e1000606. https://doi.org/10.1371/journal.pbio.1000606
55. Graham NA, Wilson SK, Jennings S, Polunin NV, Bijoux JP, Robinson J. Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci U S A. 2006; 103(22): 8425–8429. doi: 10.1073/pnas.0600693103 16709673
56. Triki Z, Bshary R. Fluctuations in coral reef fish densities after environmental disturbances on the northern Great Barrier Reef. PeerJ. 2019; 7: e6720. doi: 10.7717/peerj.6720 30993047
57. Wilson SK, Graham NA, Pratchett MS, Jones GP, Polunin NV. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient?. Global Change Biology. 2006; 12(11): 2220–2234. https://doi.org/10.1111/j.1365-2486.2006.01252.x
58. Coker DJ, Wilson SK, Pratchett MS. Importance of live coral habitat for reef fishes. Rev Fish Biol Fisher. 2014; 24(1): 89–126.
59. Pratchett MS, Munday P, Wilson SK, Graham NA, Cinner JE, Bellwood DR, et al. Effects of climate-induced coral bleaching on coral-reef fishes. Ecological and economic consequences. Oceanography and Marine Biology: An Annual Review. 2008; 46: 251–296.
60. Spaet JLY, Berumen ML. Fish market surveys indicate unsustainable elasmobranch fisheries in the Saudi Arabian Red Sea. Fish Res. 2015; 356–364. https://doi.org/10.1016/j.fishres.2014.08.022
61. Kattan A, Coker DJ, Berumen ML. Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure. Mar Biodivers. 2017; 47: 1227–1238.
62. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr. 2004; 31(1): 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x
63. Mumby PJ, Edwards AJ, Arias-Gonzaléz JE, Lindeman KC, Blackwell PG, Gall A, et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature. 2004; 427:533–536. doi: 10.1038/nature02286 14765193
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs