Fine epitope mapping of glycoprotein Gn in Guertu virus
Autoři:
Jingyuan Zhang aff001; Abulimiti Moming aff001; Xihong Yue aff002; Shu Shen aff003; Dongliang Liu aff001; Wan-xiang Xu aff004; Chen Wang aff002; Juntao Ding aff001; Yijie Li aff001; Fei Deng aff003; Yujiang Zhang aff002; Surong Sun aff001
Působiště autorů:
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi,China
aff001; Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
aff002; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
aff003; NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223978
Souhrn
Guertu virus (GTV) is a tick-borne phleboviruses (TBPVs) which belongs to the genus Banyangvirus in the family of Phenuiviridae. In vitro and in vivo studies of GTV demonstrated that it was able to infect animal and human cell lines and could cause pathological lesions in mice. Glycoproteins (GP, including Gn and Gc) on the surface of Guertu virus (GTV) could bind to receptors on host cells and induce protective immunity in the host, but knowledge is now lacking on the information of B cell epitopes (BCEs) present on GTV-GP protein. The aim of this study was to identify all BCEs on Gn of the GTV DXM strain using rabbit pAbs against GTV-Gn. Seven fine BCEs and two antigenic peptides (APs) from nine reactive 16mer-peptides were identified, which are EGn1 (2PIICEGLTHS11), EGn2 (135CSQDSGT141), EGn3 (165IP EDVF170), EGn4 (169VFQEL K174), EGn5 (187IDGILFN193), EGn6 (223QTKWIQ228), EGn7 (237CHKDGIGPC245), AP-8 (299GVRVRPKCYGFSRMMA314) and AP-9 (355CASH FCSSAESGKKNT370), of which six of mapped BCEs were recognized by the IgG-positive sheep serum obtained from sheep GTV-infected naturally. Multiple sequence alignments (MSA) based on each mapped BCE motif identified that the most of identified BCEs and APs are highly conserved among 10 SFTSV strains from different countries and lineages that share relatively close evolutionary relationships with GTV. The fine epitope mapping of the GTV-Gn would provide basic data with which to explore the GTV-Gn antigen structure and pathogenic mechanisms, and it could lay the foundation for the design and development of a GTV multi-epitope peptide vaccine and detection antigen.
Klíčová slova:
Sequence motif analysis – Antibodies – Plasmid construction – Antigens – Amino acid sequence analysis – Sheep – Epitope mapping – Immune serum
Zdroje
1. Kim KH, Yi J, Kim G, Choi SJ, Jun KI, Kim NH, et al. Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerg Infect Dis. 2013; 19: 1892–1894. https://doi.org/10.3201/eid1911.130792 24206586
2. Kurihara S, Satoh A, Yu F, Hayasaka D, Shimojima M, Tashiro M, et al. The world first two cases of severe fever with thrombocytopenia syndrome: an epidemiological study in Nagasaki, Japan. J Infect Chemother. 2013; 22(7): 461–465. https://doi.org/10.1016/j.jiac.2016.04.001 27142979
3. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, et al. The first identification and retrospective study of Severe fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014; 209(6): 816–827. https://doi.org/10.1093/infdis/jit603 24231186
4. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011; 364(16): 1523–1532. https://doi.org/10.1056/NEJMoa1010095 21410387
5. Mcmullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, et al. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med. 2012; 367(9): 834–841. https://doi.org/10.1056/NEJMoa1203378 22931317
6. Fill MM, Compton ML, Mcdonald EC, Moncayo AC, Dunn JR, Schaffner W, et al. Novel clinical and pathologic findings in a heartland virus-associated death. Clin Infect Dis. 2016; 64: 510–512. https://doi.org/10.1093/cid/ciw766 27927857
7. Muehlenbachs A, Fata CR, Lambert AJ, Paddock CD, Velez JO, Blau DM, et al. Heartland virus-associated death in Tennessee. Clin Infect Dis. 2014; 59: 845–850. https://doi.org/10.1093/cid/ciu434 24917656
8. Shi M, Lin X D, Tian JH, Chen LJ, Chen X, Li CX, et al. Redefining the invertebrate RNA virosphere. Nature. 2016; 540(7634): 539–542. https://doi.org/10.1038/nature20167 27880757
9. Shen S, Duan XM, Wang B, Zhu LY, Zhang YF, Zhang JY, et al. A novel tick-borne phlebovirus, closely related to severe fever with thrombocytopenia syndrome virus and Heartland virus, might be a potential pathogen. Emerg Microbes Infect. 2018; 7(1): 95–108. https://doi.org/10.1038/s41426-018-0093-2 29802259
10. Abudurexiti A, Adkins S, Alioto D, Alkhovsky SV, Avšič-Županc T, Ballinger MJ, et al. Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019; 164(7): 1949–1965. https://doi.org/10.1007/s00705-019-04253-6 31065850
11. Wu Y, Zhu Y, Gao F, Jiao Y, Oladejo BO, Chai Y, et al. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc Natl Acad Sci USA. 2017; 114(36): E7564. https://doi.org/10.1073/pnas.1705176114 28827346
12. Hofmann H, Li X, Zhang X, Liu W, Annika Kühl, Kaup F, et al. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol. 2013; 87: 4384–4394. https://doi.org/10.1128/JVI.02628–12 23388721
13. Elliott RM, Brennan B. Emerging phleboviruses. Curr Opin Virol. 2014; 5: 50–57. https://doi.org/10.1016/j.coviro.2014.01.011 24607799
14. Suda Y, Fukushi S, Tani H, Murakami S, Saijo M, Horimoto T, et al. Analysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping system. Arch Virol. 2016; 161: 1447–1454. https://doi.org/10.007/s00705-016-2803-1 26935918
15. Matsuno K, Weisend C, Kajihara M, Matysiak C, Williamson BN, Simuunza M, et al. Comprehensive molecular detection of tick-borne phleboviruses leads to the retrospective identification of taxonomically unassigned bunyaviruses and the discovery of a novel member of the genus phlebovirus. J Virol. 2015; 89: 594–604. https://doi.org/10.1128/JVI.02704-14 25339769
16. Lian Y, Huang ZC, Ge M. Deep maxout networks applied to antibody class- specific B-cell epitopes prediction. Acta Laser Biology Sinica. 2016; 25(1):56–60. https://doi.org/10.3969/j.issn.1007-7146.2016.01.008
17. Morrow JF, Cohen SN, Chang ACY, Boyer HW, Goodman HM, Helling RB. Replication and transcription of eukaryotic DNA in Escherichia coli. Proc Natl Acad Sci USA. 1974; 71(5): 1743–1747. https://doi.org/10.1073/pnas.71.5.1743 4600264
18. Houen G. Peptide Antibodies: Past, Present, and Future. Methods Mol Biol. 2015; 1348:1–6. https://doi.org/10.1007/978-1-4939-2999-3_1 26424257
19. Ladner Robert C. Mapping the Epitopes of Antibodies. Biotechnol Geneti Eng Rev. 2007; 24: 1–30. https://doi.org/10.1080/02648725.2007.10648092 18059626
20. Han Z, Zhao F, Shao Y, Liu X, Song Y, Liu S. Fine level epitope mapping and conservation analysis of two novel linear B-cell epitopes of the avian infectious bronchitis coronavirus nucleocapsid protein. Virus Research. 2013; 171: 54–64. https://doi.org/10.1016/j.virusres.2012.10.028 23123213
21. Xu WX, He YP, Tang HP, Jia XF, Ji CN, Gu SH, et al. Minimal motif mapping of a known epitope on human zona pellucida protein-4 using a peptide biosynthesis strategy. J Reprod Immunol. 2009; 81: 9–16. https://doi.org/10.1016/j.jri.2009.04.004 19539378
22. Xu WX, Wang J, Tang HP, Chen LH, Lian WB, Zhan JM, et al. A simpler and more cost-effective peptide biosynthetic method using the truncated GST as carrier for epitope mapping. PloS One. 2017; 12(10): e0186097. https://doi.org/10.1371/journal.pone.0186097 29023483
23. Xu WX, He YP, Wang J, Tang HP, Shi HJ, Sun XX, et al. Mapping of minimal motifs of B-Cell epitopes on human zona pellucida glycoprotein-3. Clin Dev Immunol. 2014; 2012(1): 831010. https://doi.org/10.1155/2012/831010 22162720
24. Xu WX, Wang J, Tang HP, He YP, Zhu QX, Gupta SK, et al. Epitomics: IgG-epitome decoding of E6, E7 and L1 proteins from oncogenic human papillomavirus type 58. Sci Rep. 2016; 6(6): 34686. https://doi.org/10.1038/srep34686 27708433
25. Moming A, Tuoken D, Yue XH, Xu WX, Guo R, Liu DL, et al. Mapping of B-cell epitopes on the N- terminal and C-terminal segment of nucleocapsid protein from Crimean-Congo hemorrhagic fever virus. PLoS ONE. 2018, 13(9): e0204264. https://doi.org/10.1371/journal.pone.0204264 30235312
26. Shalitanati A, Yu H, Liu DL, Xu WX, Yue XH, Guo R, et al. Fine mapping epitope on glycoprotein-Gn from Crimean-Congo hemorrhagic fever virus. Comp Immunol Microbiol Infect Dis. 2018; 59: 24–31. https://doi.org/10.1016/j.cimid.2018.09.003 30290884
27. Shi J, Hu S, Liu X, Yang J, Liu D, Wu L, et al. Migration, recombination, and reassortment are involved in the evolution of severe fever with thrombocytopenia syndrome bunyavirus. Infect Genet Evol. 2016; (47): 109–117. https://doi.org/10.1016/j.meegid.2016.11.015 27884653
28. Garnier J. The GOR method for predicting secondary structures in proteins. Prediction of protein structure and the principles of protein conformation. 1989; 417–465. https://doi.org/10.1007/978-1-4613-1571-1_10
29. Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978; 47(6): 145–148. https://doi.org/10.1002/9780470122921.ch2 364941
30. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982; 157: 105–132. https://doi.org/10.1016/0022-2836(82)90515–0 7108955
31. Karplus PA, Schulz GE. Prediction of chain flexibility in proteins. The Science of Nature. 1985; 72(4): 212–213. https://doi.org/10.1007/BF01195768
32. Emini EA, Hughes JV, Perlow DS, Boger J. Induction of hepatitis A virus- neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985; 55: 836–839. https://doi.org/10.0000 2991600
33. Jameson BA, Wolf H. The antigenic index: A novel algorithm for predicting antigenic determinants. Comput Appl Biosci. 1988; 4: 181–186. https://doi.org/10.1093/bioinformatics/4.1.181 2454713
34. Sanchez AJ, Vincent MJ, Nichol ST. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol. 2002; 76: 7263–7275. https://doi.org/10.1128/JVI.76.14.7263–7275.2002 12072526
35. Arikawa J, Yao JS, Yoshimatsu K, Takashima I, Hashimoto N. Protective role of antigenic sites on the envelope protein of Hantaan virus defined by monoclonal antibodies. Arch Virol. 1992; 126: 271–281. https://doi.org/10.1007/BF01309700 1381911
36. Yu RS, Zhu R, Gao WX, Zhang M, Dong SJ, Chen BQ, et al. Fine mapping and conservation analysis of linear B-cell epitopes of peste des petits ruminants virus hemagglutinin protein. Vet Microbiol. 2017; 208: 110–117. https://doi.org/10.1016/j.vetmic.2017.07.008 28888625
37. Yu R, Fan X, Xu W, Li W, Dong S, Zhu Y, et al. Fine mapping and conservation analysis of linear B-cell epitopes of peste des petits ruminants virus nucleoprotein. Vet Microbiol. 2015; 175: 132–138 https://doi.org/10.1016/j.vetmic.2014.10.012 25465659
38. He YP, Xu WX, Hong AZ, Liao MC, Ji CN, Gu SH, et al. Immunogenic comparison for two different recombinant chimeric peptides (CP12 and CP22) containing one or two copies of three linear B cell epitopes from β-hCG subunit. J Biotechnol. 151: 15–21 https://doi.org/10.1016/j.jbiotec.2010.11.003 21084058
39. Dillner J. Mapping of linear epitopes of human papillomavirus type 16: the E1, E2, E4, E5, E6 and E7 open reading frames. Int J Cancer. 1990; 48: 703–711 https://doi.org/10.1002/ijc.2910460426 1698732
40. Hua R, Zhou Y, Wang Y, Hua Y, Tong G. Identification of two antigenic epitopes on SARS-CoV spike protein. Biochem Biophys Res Commun. 2004; 319: 929–935 https://doi.org/10.1016/j.bbrc.2004.05.066 15184071
41. Zhao R, Cui S, Guo L, Wu C, Gonzalez R, Paranhos-Baccalà G, et al. Identification of a highly conserved H1 subtype-specific epitope with diagnostic potential in the hemagglutinin protein of influenza A virus. PLoS One. 2011; 6(8): e23374. https://doi.org/10.1371/journal.pone.0023374 21886787
42. Roberts BL, Markland W, Ley AC, Kent RB, White DW, Guterman SK, et al. Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc Natl Acad Sci USA. 1992; 89: 2429–2433. doi: 10.1073/pnas.89.6.2429 1549606
43. Liu D, Li Y, Zhao J, Deng F, Duan X, Kou C, Wu T, et al. Fine epitope mapping of the central immunodominant region of nucleoprotein from Crimean-Congo hemorrhagic fever virus (CCHFV). PLoS One. 2014; 9(11): e108419. https://doi.org/10.1371/journal.pone.0108419 25365026
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs