Replacing plasma membrane outer leaflet lipids with exogenous lipid without damaging membrane integrity
Autoři:
Guangtao Li aff001; Shinako Kakuda aff001; Pavana Suresh aff001; Daniel Canals aff002; Silvia Salamone aff002; Erwin London aff001
Působiště autorů:
Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
aff001; Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223572
Souhrn
We recently introduced a MαCD-based method to efficiently replace virtually the entire population of plasma membrane outer leaflet phospholipids and sphingolipids of cultured mammalian cells with exogenous lipids (Li et al, (2016) Proc. Natl. Acad. Sci USA 113:14025–14030). Here, we show if the lipid-to- MαCD ratio is too high or low, cells can round up and develop membrane leakiness. We found that this cell damage can be reversed/prevented if cells are allowed to recover from the exchange step by incubation in complete growth medium. After exchange and transfer to complete growth medium cell growth was similar to that of untreated cells. In some cases, cell damage was also prevented by carrying out exchange at close to room temperature (rather than at 37°C). Exchange with lipids that do (sphingomyelin) or do not (unsaturated phosphatidylcholine) support a high level of membrane order in lipid vesicles had the analogous effect on plasma membrane order, confirming exogenous lipid localization in the plasma membrane. Importantly, changes in lipid composition and plasma membrane properties after exchange and recovery persisted for several hours. Thus, it should be possible to use lipid exchange to investigate the effect of plasma membrane lipid composition upon several aspects of membrane structure and function.
Klíčová slova:
Lipids – Phospholipids – Cell membranes – Vesicles – CHO cells – Thin-layer chromatography – Lipid analysis – Lipid structure
Zdroje
1. Adada M, Luberto C, Canals D. Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases. Chemistry and physics of lipids. 2016;197:45–59. Epub 2015/07/23. doi: 10.1016/j.chemphyslip.2015.07.008 26200918.
2. Delgado A, Casas J, Llebaria A, Abad JL, Fabrias G. Inhibitors of sphingolipid metabolism enzymes. Biochimica et biophysica acta. 2006;1758(12):1957–77. Epub 2006/10/20. doi: 10.1016/j.bbamem.2006.08.017 17049336.
3. Dowhan W. Molecular genetic approaches to defining lipid function. Journal of lipid research. 2009;50 Suppl:S305–10. Epub 2008/11/05. doi: 10.1194/jlr.R800041-JLR200 18980944; PubMed Central PMCID: PMC2674694.
4. Cheng HT, London E. Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophys J. 2011;100(11):2671–8. Epub 2011/06/07. doi: 10.1016/j.bpj.2011.04.048 21641312; PubMed Central PMCID: PMC3117185.
5. Cheng HT, Megha, London E. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem. 2009;284(10):6079–92. Epub 2009/01/09. doi: 10.1074/jbc.M806077200 19129198; PubMed Central PMCID: PMC2649079.
6. Chiantia S, Schwille P, Klymchenko AS, London E. Asymmetric GUVs prepared by MbetaCD-mediated lipid exchange: an FCS study. Biophysical journal. 2011;100(1):L1–3. Epub 2010/12/31. doi: 10.1016/j.bpj.2010.11.051 21190650; PubMed Central PMCID: PMC3010840.
7. Lin Q, London E. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. PLoS One. 2014;9(1):e87903. Epub 2014/02/04. doi: 10.1371/journal.pone.0087903 24489974; PubMed Central PMCID: PMC3905041.
8. Lin Q, London E. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Biophys J. 2015;108(9):2212–22. Epub 2015/05/09. doi: 10.1016/j.bpj.2015.03.056 25954879; PubMed Central PMCID: PMC4423047.
9. Son M, London E. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure. J Lipid Res. 2013;54(1):223–31. Epub 2012/10/25. doi: 10.1194/jlr.M032722 23093551; PubMed Central PMCID: PMC3520528.
10. Son M, London E. The dependence of lipid asymmetry upon polar headgroup structure. J Lipid Res. 2013;54(12):3385–93. Epub 2013/10/09. doi: 10.1194/jlr.M041749 24101657; PubMed Central PMCID: PMC3826685.
11. Tanhuanpaa K, Somerharju P. gamma-cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies. The Journal of biological chemistry. 1999;274(50):35359–66. Epub 1999/12/10. doi: 10.1074/jbc.274.50.35359 10585403.
12. Kainu V, Hermansson M, Somerharju P. Introduction of phospholipids to cultured cells with cyclodextrin. J Lipid Res. 2010;51(12):3533–41. Epub 2010/10/01. doi: 10.1194/jlr.D009373 20881052; PubMed Central PMCID: PMC2975726.
13. Kainu V, Hermansson M, Somerharju P. Electrospray ionization mass spectrometry and exogenous heavy isotope-labeled lipid species provide detailed information on aminophospholipid acyl chain remodeling. J Biol Chem. 2008;283(6):3676–87. Epub 2007/12/07. doi: 10.1074/jbc.M709176200 18056998.
14. Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc Natl Acad Sci U S A. 2016;113(49):14025–30. Epub 2016/11/23. doi: 10.1073/pnas.1610705113 27872310; PubMed Central PMCID: PMC5150368.
15. Somogyi G, Posta J, Buris L, Varga M. Cyclodextrin (CD) complexes of cholesterol—their potential use in reducing dietary cholesterol intake. Die Pharmazie. 2006;61(2):154–6. Epub 2006/03/11. 16526565.
16. Irie T, Fukunaga K, Pitha J. Hydroxypropylcyclodextrins in parenteral use. I: Lipid dissolution and effects on lipid transfers in vitro. Journal of pharmaceutical sciences. 1992;81(6):521–3. Epub 1992/06/01. doi: 10.1002/jps.2600810609 1522487.
17. Sezgin E, Kaiser HJ, Baumgart T, Schwille P, Simons K, Levental I. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nature protocols. 2012;7(6):1042–51. Epub 2012/05/05. doi: 10.1038/nprot.2012.059 22555243.
18. London E, Feligenson GW. A convenient and sensitive fluorescence assay for phospholipid vesicles using diphenylhexatriene. Analytical biochemistry. 1978;88(1):203–11. Epub 1978/07/15. doi: 10.1016/0003-2697(78)90412-8 696996.
19. Bielawski J, Szulc ZM, Hannun YA, Bielawska A. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods. 2006;39(2):82–91. Epub 2006/07/11. doi: 10.1016/j.ymeth.2006.05.004 16828308.
20. Oglecka K, Rangamani P, Liedberg B, Kraut RS, Parikh AN. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. Elife. 2014;3:e03695. Epub 2014/10/16. doi: 10.7554/eLife.03695 25318069; PubMed Central PMCID: PMC4197780.
21. Holowka D, Baird B. Structural studies on the membrane-bound immunoglobulin E-receptor complex. 1. Characterization of large plasma membrane vesicles from rat basophilic leukemia cells and insertion of amphipathic fluorescent probes. Biochemistry. 1983;22(14):3466–74. Epub 1983/07/05. doi: 10.1021/bi00283a025 6225455.
22. Scott RE, Perkins RG, Zschunke MA, Hoerl BJ, Maercklein PB. Plasma membrane vesiculation in 3T3 and SV3T3 cells. I. Morphological and biochemical characterization. Journal of cell science. 1979;35:229–43. Epub 1979/02/01. 370129.
23. Scott RE, Robson HG. Synergistic activity of carbenicillin and gentamicin in experimental Pseudomonas bacteremia in neutropenic rats. Antimicrobial agents and chemotherapy. 1976;10(4):646–51. Epub 1976/10/01. doi: 10.1128/aac.10.4.646 825035; PubMed Central PMCID: PMC429808.
24. Levental I, Grzybek M, Simons K. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc Natl Acad Sci U S A. 2011;108(28):1141–6. Epub 2011/06/29. doi: 10.1073/pnas.1105996108 21709267; PubMed Central PMCID: PMC3136254.
25. Prendergast FG, Haugland RP, Callahan PJ. 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry. 1981;20(26):7333–8. Epub 1981/12/22. doi: 10.1021/bi00529a002 7326228.
26. Keller H, Lorizate M, Schwille P. PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems. Chemphyschem: a European journal of chemical physics and physical chemistry. 2009;10(16):2805–12. Epub 2009/09/29. doi: 10.1002/cphc.200900598 19784973.
27. Jay AG, Hamilton JA. Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms. Journal of fluorescence. 2017;27(1):243–9. Epub 2016/10/16. doi: 10.1007/s10895-016-1951-8 27738919.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis