Identifying genetic lineages through shape: An example in a cosmopolitan marine turtle species using geometric morphometrics
Autoři:
Rocío Álvarez-Varas aff001; David Véliz aff001; Gabriela M. Vélez-Rubio aff003; Alejandro Fallabrino aff003; Patricia Zárate aff005; Maike Heidemeyer aff006; Daniel A. Godoy aff009; Hugo A. Benítez aff010
Působiště autorů:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
aff001; Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
aff002; Karumbé NGO, Montevideo, Uruguay
aff003; Centro Universitario Regional del Este (CURE), Sede Rocha, Universidad de la República, Rocha, Uruguay
aff004; Departamento de Oceanografía y Medio Ambiente, Instituto de Fomento Pesquero, Valparaíso, Chile
aff005; Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, San José, Costa Rica
aff006; Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José, Costa Rica
aff007; Asociación para la Conservación Integral de Recursos Naturales Equipo Tora Carey (ETC), El Jobo, La Cruz, Guanacaste, Costa Rica
aff008; Coastal-Marine Research Group, Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
aff009; Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
aff010
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223587
Souhrn
The green turtle (Chelonia mydas) is a globally distributed marine species whose evolutionary history has been molded by geological events and oceanographic and climate changes. Divergence between Atlantic and Pacific clades has been associated with the uplift of the Panama Isthmus, and inside the Pacific region, a biogeographic barrier located west of Hawaii has restricted the gene flow between Central/Eastern and Western Pacific populations. We investigated the carapace shape of C. mydas from individuals of Atlantic, Eastern Pacific, and Western Pacific genetic lineages using geometric morphometrics to evaluate congruence between external morphology and species’ phylogeography. Furthermore, we assessed the variation of carapace shape according to foraging grounds. Three morphologically distinctive groups were observed which aligned with predictions based on the species’ lineages, suggesting a substantial genetic influence on carapace shape. Based on the relationship between this trait and genetic lineages, we propose the existence of at least three distinct morphotypes of C. mydas. Well-defined groups in some foraging grounds (Galapagos, Costa Rica and New Zealand) may suggest that ecological or environmental conditions in these sites could also be influencing carapace shape in C. mydas. Geometric morphometrics is a suitable tool to differentiate genetic lineages in this cosmopolitan marine species. Consequently, this study opens new possibilities to explore and test ecological and evolutionary hypotheses in species with wide morphological variation and broad geographic distribution range.
Klíčová slova:
Evolutionary genetics – Phylogeography – Chile (country) – Foraging – Turtles – Genetic polymorphism – Marine geology – Pacific Ocean
Zdroje
1. Jensen MP, FitzSimmons NN, Dutton PH. Molecular genetics of sea turtles. In: Wyneken J, Lohmann KJ, Musick JA, editors. The Biology of Sea Turtles, Volume 3. Boca Raton, FL: CRC Press; 2013. pp. 135–154.
2. Bowen BW, Karl SA. Population genetics and phylogeography of sea turtles. Mol Ecol. 2007; 16: 4886–4907. doi: 10.1111/j.1365-294X.2007.03542.x 17944856
3. Seminoff JA, Allen CD, Balazs GH, Dutton PH, Eguchi T, Haas HL, et al. Status Review of the Green Turtle (Chelonia mydas) Under the U.S. Endangered Species Act. NOAA Technical Memorandum, NOAANMFS-SWFSC-539; 2015.
4. Bowen BW, Meylan AB, Ross JP, Limpus CJ, Balazs GH, Avise JC. Global population structure and natural history of the green turtle (Chelonia mydas) in terms of matriarchal phylogeny. Evolution. 1992; 46: 865–881. doi: 10.1111/j.1558-5646.1992.tb00605.x 28564410
5. Dethmers KEM, Broderick D, Moritz C, FitzSimmons NN, Limpus CJ, Lavery S, et al. The genetic structure of Australasian green turtles (Chelonia mydas): exploring the geographical scale of genetic exchange. Mol Ecol. 2006; 15: 3931–3946. doi: 10.1111/j.1365-294X.2006.03070.x 17054494
6. Dutton PH, Jensen MP, Frey A, LaCasella E, Balazs GH, Zárate P, et al. Population structure and phylogeography reveal pathways of colonization by a migratory marine reptile (Chelonia mydas) in the central and eastern Pacific. Ecol Evol. 2014; 4: 4317–4331. doi: 10.1002/ece3.1269 25540693
7. Amorocho DF, Abreu-Grobois FA, Dutton PH, Reina RD. Multiple distant origins for green sea turtles aggregating off Gorgona Island in the Colombian Eastern Pacific. PLoS-ONE. 2012; 7(2): e31486. doi: 10.1371/journal.pone.0031486 22319635
8. Zárate PM, Bjorndal KA, Seminoff JA, Dutton PH, Bolten AB. Somatic growth rates of green turtles (Chelonia mydas) and hawksbills (Eretmochelys imbricata) in the Galapagos Islands. J Herpetol. 2015; 49: 641–648.
9. Godoy DA. The ecology and conservation of green turtles (Chelonia mydas) in New Zealand. Ph.D. Thesis, Massey University. 2016. Available from: https://mro.massey.ac.nz/handle/10179/12200.
10. Chaves JA, Peña M, Valdés-Uribe JA, Muñoz-Pérez JP, Vallejo F, Heidemeyer, et al. Connectivity, population structure, and conservation of Ecuadorian green sea turtles. Endanger Species Res. 2017; 32:251–264.
11. Wyneken J, Balazs GH, Murakawa S, Anderson Y. Size differences in hind limbs and carapaces of hatchling green turtles (Chelonia mydas) from Hawaii and Florida, USA. Chelonian Conserv Bi. 1999; 3:491–495.
12. Sönmez B. Morphological Variations in the Green Turtle (Chelonia mydas): A Field Study on an Eastern Mediterranean Nesting Population. Zool Stud. 2019; 58.
13. Kamezaki N, Matsui M. Geographic variation in skull morphology of the green turtle, Chelonia mydas, with a taxonomic discussion. J Herpetol. 1995; 29: 51–60.
14. Groombridge B, Luxmoore R. The green turtle and hawksbill (Reptilia: Cheloniidae): world status, exploitation and trade, Flora. CITES, Lausanne, Switzerland; 1989.
15. Parker DM, Dutton PH, Balazs GH. Oceanic diet and distribution of haplotypes for the green turtle, Chelonia mydas, in the Central North Pacific. Pac Sci. 2011; 65: 419–431.
16. Pritchard PC. Galapagos sea turtles: preliminary findings. J Herpetol. 1971; 1–9.
17. Pritchard PC, Mortimer JA. Taxonomy, external morphology, and species identification. In: Eckert KL, Bjorndal KA, Abreu-Grobois FA, Donnelly M. editors. Research and Management Techniques for the Conservation of Sea Turtles. Washington, DC: IUCN/SSC Marine Turtle Specialist Group Publication No. 4; 1999. pp. 21–40.
18. Juárez-Ceron JA, Sarti-Martinez AL, Dutton PH. First study of the green/black turtles of the Revillagigedo Archipelago: a unique nesting stock in the Eastern Pacific. In: Seminoff JA, editor. Twenty- Second Annual Symposium on Sea Turtle Biology and Conservation. Miami: NOAA Technical Memorandum NMFS-SEFSC-503; 2003. pp. 70.
19. Benson SR, Dutton P. Sea turtles of the U.S. West coast: Life in the higher latitudes. In: Seminoff J, Wallace B, editors. Sea Turtles of the Eastern Pacific. Tucson, Arizona: University of Arizona Press; 2012. pp. 88–112.
20. Naro-Maciel E, Gaughran SJ, Putman NF, Amato G, Arengo F, Dutton PH, et al. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: a focus on mtDNA and dispersal modelling. J R Soc Interface. 2014; 11: 20130888. doi: 10.1098/rsif.2013.0888 24451389
21. Rohlf FJ, Slice D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol. 1990; 39: 40–59.
22. Adams DC, Rohlf FJ, Slice DE. A field comes of age: geometric morphometrics in the 21st century. Hystrix. 2013; 24: 7.
23. Gaubert P, Taylor PJ, Fernandes CA, Bruford MW, Veron G. Patterns of cryptic hybridization revealed using an integrative approach: a case study on genets (Carnivora, Viverridae, Genetta spp.) from the southern African subregion. Biol J Linn Soc. 2005; 86: 11–33.
24. Foster DJ, Podos J, Hendry AP. A geometric morphometric appraisal of beak shape in Darwin’s finches. J Evol Biol. 2008; 21: 263–275. doi: 10.1111/j.1420-9101.2007.01449.x 18021202
25. Kircher L, Wyneken J. Sex Estimation by Geometric Morphometric Analysis of Loggerhead (Caretta caretta) Sea Turtle Hatchlings. Mar Turt Newsl. 2017; 154: 12–15.
26. Sönmez B, Bağda E, Candan O, Yilmaz HE. Sex Determination in Green Turtle Hatchlings: Geometric Morphometry and Molecular Sex Markers. NESciences. 2019; 4:42–54.
27. Ferreira-Júnior PD, Treichel RL, Scaramussa TL, Scalfoni JT. Morphometric pattern in Caretta caretta (Linnaeus, 1758) (Cheloniidae) hatchlings from nests with different embryo development rates. Braz J of Biol. 2011; 71:151–156.
28. Nishizawa H, Asahara M, Kamezaki N, Arai N. (2010). Differences in the skull morphology between juvenile and adult green turtles: implications for the ontogenetic diet shift. Curr Herpetol. 2010; 29:97–101.
29. Casale P, Freggi D, Rigoli A, Ciccocioppo A, Luschi P. Geometric morphometrics, scute patterns and biometrics of loggerhead turtles (Caretta caretta) in the central Mediterranean. Amphib-reptil. 2017; 38: 145–156.
30. Myers EM, Janzen FJ, Adams DC, Tucker JK. Quantitative genetics of plastron shape in slider turtles (Trachemys scripta). Evolution 2006; 60:563–572. 16637501
31. Rivera G. Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Integr Comp Biol. 2008; 48:769–787. doi: 10.1093/icb/icn088 21669831
32. Chiari Y, Hyseni C, Fritts TH, Glaberman S, Marquez C, Gibbs JP, Caccone A. Morphometrics parallel genetics in a newly discovered and endangered taxon of Galápagos tortoise. PLoS-ONE. 2009; 4(7): e6272. doi: 10.1371/journal.pone.0006272 19609441
33. Lamb T, Avise JC. Molecular and population genetic aspects of mitochondrial DNA variability in the diamondback terrapin, Malaclemys terrapin. J Hered. 1992; 83:262–269.
34. Poulakakis N, Edwards DL, Chiari Y, Garrick RC, Russello MA, Benavides E, et al. Description of a new Galápagos giant tortoise species (Chelonoidis; Testudines: Testudinidae) from Cerro Fatal on Santa Cruz island. PLoS-ONE. 2015; 10(10): e0138779. doi: 10.1371/journal.pone.0138779 26488886
35. Vélez-Rubio GM, Cardona L, López-Mendilaharsu M, Souza GM, Carranza A, González-Paredes D, Tomás J. Ontogenetic dietary changes of green turtles (Chelonia mydas) in the temperate southwestern Atlantic. Mar Biol. 2016; 163(3), 57.
36. Heidemeyer M, Arauz-Vargas R, López-Agüero E. New foraging grounds for hawksbill (Eretmochelys imbricata) and green turtles (Chelonia mydas) along the northern Pacific coast of Costa Rica, Central America. Rev Biol Trop. 2014; 62: 109–118.
37. Álvarez-Varas R, Contardo J, Heidemeyer M, Forero-Rozo L, Brito B, Cortés V, et al. Ecology, health and genetic characterization of the southernmost green turtle (Chelonia mydas) aggregation in the Eastern Pacific: implications for local conservation strategies. Lat Am J Aquat Res. 2017; 45: 540–554.
38. Monteiro DS, Estima SC, Gandra TB, Silva AP, Bugoni L, Swimmer Y, et al. Long-term spatial and temporal patterns of sea turtle strandings in southern Brazil. Mar Biol. 2016; 163: 247.
39. Abreu-Grobois FA, Horrocks JA, Formia A, Dutton PH, LeRoux RA Velez-Zuazo X, Soares LS, Meylan AB. New mtDNA Dloop primers which work for a variety of marine turtle species may increase the resolution of mixed stock analysis. In: Frick M, Panagopoulous A, Rees AF, Williams K, editors. Twenty-Sixth Annual Symposium on Sea Turtle Biology and Conservation. Athens, Greece: International Sea Turtle Society; 2006, pp. 179.
40. Godoy DA, Smith ANH, Limpus CJ, Stockin KA.The spatio-temporal distribution and population structure of green turtles (Chelonia mydas) in New Zealand. N Z J Mar Freshw Res. 2016; 50: 549–565.
41. Encalada SE, Lahanas PN, Bjorndal KA, Bolten AB, Miyamoto MM, Bowen BW. Phylogeography and population structure of the Atlantic and Mediterranean green turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment. Mol Ecol.1996; 5: 473–483. 8794558
42. Reece JS, Castoe TA, Parkinson CL. Historical perspectives on population genetics and conservation of three marine turtle species. Conserv Genet. 2005; 6: 235–251.
43. Naro-Maciel E, Reid BN, Alter SE, Amato G, Bjorndal KA, Bolten AB, et al. From refugia to rookeries: phylogeography of Atlantic green turtles. J Exp Mar Biol Ecol. 2014; 461: 306–316.
44. Caraccio MN. Análisis de la composición genética de Chelonia mydas (tortuga verde) en el área de alimentación y desarrollo de Uruguay. M. Sc. Thesis, Universidad de la República. 2008. Available from: http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=FCT.xis&method=post&formato=2&cantidad=1&expresion=mfn=001776.
45. Rohlf FJ. TpsDig, version 2.30. New York: Department of Ecology and Evolution, State University of New York at Stony Brook; 2017.
46. Klingenberg CP. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol. 2016; 226: 113–137. doi: 10.1007/s00427-016-0539-2 27038023
47. Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011; 11: 353–357. doi: 10.1111/j.1755-0998.2010.02924.x 21429143
48. Dutton PH, Bowen BW, Owens DW, Barragan A, Davis SK. Global phylogeography of the leatherback turtle (Dermochelys coriacea). J Zool. 1999; 248: 397–409.
49. Duchene S, Frey A, Alfaro-Núñez A, Dutton PH, Gilbert MTP, Morin PA. Marine turtle mitogenome phylogenetics and evolution. Mol Phylogenet Evol. 2012; 65: 241–250. doi: 10.1016/j.ympev.2012.06.010 22750111
50. Ekman S. Zoogeography of the Sea. London: Sidgwick and Jackson Ltd; 1953.
51. Baums IB, Boulay JN, Polato NR, Hellberg ME. No gene flow across the Eastern Pacific Barrier in the reef‐building coral Porites lobata. Mol Ecol. 2012; 21: 5418–5433. doi: 10.1111/j.1365-294X.2012.05733.x 22943626
52. Roden SE, Morin PA, Frey A, Balazs GH, Zárate P, Cheng IJ, et al. Green turtle population structure in the Pacific: new insights from single nucleotide polymorphisms and microsatellites. Endanger Species Res. 2013; 20: 227–234.
53. Karl SA, Bowen BW. Evolutionary significant units versus geopolitical taxonomy: molecular systematics of an endangered sea turtle (genus Chelonia). Conserv Biol. 1999; 13: 990–999.
54. Okamoto K, Kamezaki N. Morphological variation in Chelonia mydas (Linnaeus, 1758) from the coastal waters of Japan, with special reference to the turtles allied to Chelonia mydas agassizii Bocourt, 1868. Curr Herpetol. 2014; 33: 46–56.
55. Frazier J. Observations on sea turtles at Aldabra Atoll. Philos. Trans R Soc Lond B Biol Sci. 1971; 260: 373–410.
56. Moritz C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol. 1994; 3: 401–411.
57. Dutton PH, Balazs GH, LeRoux RA, Murakawa SK, Zárate P, Martínez LS. Composition of Hawaiian green turtle foraging aggregations: mtDNA evidence for a distinct regional population. Endanger Species Res. 2008; 5: 37–44.
58. Reiber CL, Malekpour S, McDaniel M. Effects of post-hatching maintenance temperature on desert tortoise (Gopherus agassizii) shell morphology and thermoregulatory behavior. J Herpetol. 1999; 234–240.
59. Bonnet X, Lagarde F, Henen BT, Corbin J, Nagy KA, Naulleau G, et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): influence of the environment and sexual selection on body shape and mobility. Biological J Linn Soc. 2001; 72:357–372.
60. Chiari Y, Van Der Meijden A, Caccone A, Claude J, Gilles B. Self-righting potential and the evolution of shell shape in Galápagos tortoises. Sci Rep. 2017; 7(1):15828. doi: 10.1038/s41598-017-15787-7 29192279
61. Rivera G, Stayton CT. Finite element modeling of shell shape in the freshwater turtle Pseudemys concinna reveals a trade‐off between mechanical strength and hydrodynamic efficiency. J Morphol. 2011; 272:1192–1203. doi: 10.1002/jmor.10974 21630321
62. Rivera G, Davis JN, Godwin JC, Adams DC. Repeatability of habitat-associated divergence in shell shape of turtles. Evol Biol. 2014; 41:29–37.
63. Swingland IR, North PM, Dennis A, Parker MJ. Movement patterns and morphometrics in giant tortoises. J Anim Ecol. 1989; 971–985.
64. Vega C, Stayton CT. Dimorphism in shell shape and strength in two species of emydid turtle. Herpetologica 2011: 67: 397–405.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs