Physical fitness and physical self-concept of male and female young adults in Qatar
Autoři:
Bryna C. R. Chrismas aff001; Lina Majed aff001; Zsuzsanna Kneffel aff001
Působiště autorů:
Qatar University, Sport Science Program, College of Arts and Science, Doha, Qatar
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223359
Souhrn
Background
Physical inactivity is high within the Qatari population, particularly within females, and school-based environments, contributing to increased morbidity and mortality. School-based physical activity (PA) outcomes may be mediated by physical self-concept. Low physical self-concept may negatively impact PA engagement, compromising childhood and adolescent physical fitness, which may translate into adulthood. Normative physical fitness data for the Qatari population is unavailable. Stratifying normative physical fitness appears prudent, to not only allow comparisons to be made worldwide, but enable informed decisions for public health policy and future interventions in the Qatari population.
Purpose
To establish the physical fitness of young adults in Qatar, and examine differences between males and females for physical self-concept, and engagement in school-based and extra-curricular PA.
Method
186 (females n = 85) healthy participants [median (minimum—maximum) age: males = 21 (18–26), females = 21 (18–24) y; height: males = 1.74 (1.57–1.99), females = 1.61 (1.46–1.76) m; body mass: males = 71.9 (49.3–145.0), females = 56.8 (35.7–96.4) kg] completed the ALPHA-FIT test battery for adults (one leg stand, figure of eight run, handgrip strength, jump and reach, modified push-up, dynamic sit-up and 2 km walk), physical self-description questionnaire (measuring physical self-concept), and were asked to answer ‘yes’ or ‘no’ to whether they participated in school-based and extra-curricular PA.
Results
Data is reported as effect size; ±90% confidence limit. Males compared to females most likely performed better for dynamic sit-up (2.2; ±0.76), very likely better for the figure of eight run (0.86; ±0.42) and likely better for handgrip strength (2.1; ±0.75). Males likely had higher physical self-concept for coordination (0.78; ±0.37) and endurance (0.66; ±0.27) compared to females. There were no differences for school-based PA (p ≥ 0.78) or for extra-curricular PA for males (p ≥ 0.26) or females (p ≥ 0.21).
Conclusion
The data suggests that the young Qatari adult population has variable, yet generally low, physical fitness traits compared to individuals worldwide, likely due to their low PA. The precise aetiology for this is not well documented, yet such data may be prudent to evidence-inform strategies to improve physical fitness through increased PA (synergistic relationship), given the strong association between physical activity/fitness and morbidity/mortality.
Klíčová slova:
Physical activity – Physical fitness – Hand strength – Legs – Walking – Feet – Qatar
Zdroje
1. Qatar National Physical Activity Guidelines. Qatar National Physical Activity Guidelines Qatar: Aspetar Orthopaedic & Sports Medicine Hospital; 2014. First:[72]. Available from: https://www.namat.qa/NamatImages/Publications/75/QATAR%20PA%20GUIDLINE%20ENGLISH.PDF.
2. Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W, et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet (London, England). 2016;388(10051):1311–24. Epub 2016/08/01. doi: 10.1016/s0140-6736(16)30383-x 27475266.
3. World Health Organization. Physical activity fact sheet. In: Organization WH, editor. Geneva2018.
4. Zimmo L, Farooq A, Almudahka F, Ibrahim I, Al-Kuwari MG. School-time physical activity among Arab elementary school children in Qatar. BMC pediatrics. 2017;17(1):76-. doi: 10.1186/s12887-016-0775-7 28298199.
5. Ibrahim I, Al Hammadi E, Sayegh S, Zimmo L, Al Neama J, Rezeq H, et al. Results from Qatar's 2018 Report Card on Physical Activity for Children and Youth. Journal of physical activity & health. 2018;15(S2):S400–S1. Epub 2018/11/27. doi: 10.1123/jpah.2018-0502 30475130.
6. Aubert S, Barnes JD, Aguilar-Farias N, Cardon G, Chang CK, Delisle Nystrom C, et al. Report Card Grades on the Physical Activity of Children and Youth Comparing 30 Very High Human Development Index Countries. Journal of physical activity & health. 2018;15(S2):S298–S314. Epub 2018/11/27. doi: 10.1123/jpah.2018-0431 30475144.
7. Al-Kuwari MG, Ibrahim IA, Hammadi EMA, Reilly JJ. Results From Qatar’s 2016 Active Healthy Kids Report Card on Physical Activity for Children and Youth. Journal of Physical Activity and Health. 2016;13(11 Suppl 2):S246–S50. doi: 10.1123/jpah.2016-0397 27848747
8. De Miguel-Etayo P, Gracia-Marco L, Ortega FB, Intemann T, Foraita R, Lissner L, et al. Physical fitness reference standards in European children: the IDEFICS study. International Journal Of Obesity. 2014;38:S57. doi: 10.1038/ijo.2014.136 25376221
9. Dinubile NA. Youth Fitness—Problems and Solutions. Preventive Medicine. 1993;22(4):589–94. doi: 10.1006/pmed.1993.1053 8415512
10. Rowland T. Declining Cardiorespiratory Fitness in Youth: Fact or Supposition? Pediatric Exercise Science. 2002;14(1):1–8. doi: 10.1123/pes.14.1.1
11. Armstrong N, Tomkinson G, Ekelund U. Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth. British journal of sports medicine. 2011;45(11):849. doi: 10.1136/bjsports-2011-090200 21836169
12. Catley MJ, Tomkinson GR. Normative health-related fitness values for children: analysis of 85347 test results on 9–17-year-old Australians since 1985. British journal of sports medicine. 2013;47(2):98. doi: 10.1136/bjsports-2011-090218 22021354
13. Tomkinson GR, Leger LA, Olds TS, Cazorla G. Secular trends in the performance of children and adolescents (1980–2000): an analysis of 55 studies of the 20m shuttle run test in 11 countries. Sports medicine (Auckland, NZ). 2003;33(4):285–300. Epub 2003/04/12. doi: 10.2165/00007256-200333040-00003 12688827.
14. Andersen LB, Hasselstrom H, Gronfeldt V, Hansen SE, Karsten F. The relationship between physical fitness and clustered risk, and tracking of clustered risk from adolescence to young adulthood: eight years follow-up in the Danish Youth and Sport Study. The international journal of behavioral nutrition and physical activity. 2004;1(1):6. Epub 2004/06/01. doi: 10.1186/1479-5868-1-6 15169561; PubMed Central PMCID: PMC416568.
15. Twisk JW, Kemper HC, van Mechelen W. Tracking of activity and fitness and the relationship with cardiovascular disease risk factors. Medicine and science in sports and exercise. 2000;32(8):1455–61. Epub 2000/08/19. doi: 10.1097/00005768-200008000-00014 10949012.
16. Kristensen PL, Wedderkopp N, Moller NC, Andersen LB, Bai CN, Froberg K. Tracking and prevalence of cardiovascular disease risk factors across socio-economic classes: a longitudinal substudy of the European Youth Heart Study. BMC Public Health. 2006;6:20. Epub 2006/01/31. doi: 10.1186/1471-2458-6-20 16441892; PubMed Central PMCID: PMC1403767.
17. Ruiz JR, Castro-Pinero J, Artero EG, Ortega FB, Sjostrom M, Suni J, et al. Predictive validity of health-related fitness in youth: a systematic review. British journal of sports medicine. 2009;43(12):909–23. Epub 2009/01/23. doi: 10.1136/bjsm.2008.056499 19158130.
18. Zaqout M, Michels N, Bammann K, Ahrens W, Sprengeler O, Molnar D, et al. Influence of physical fitness on cardio-metabolic risk factors in European children. The IDEFICS study. International journal of obesity (2005). 2016;40(7):1119–25. Epub 2016/02/10. doi: 10.1038/ijo.2016.22 26857382.
19. Olds T, Tomkinson G, Leger L, Cazorla G. Worldwide variation in the performance of children and adolescents: an analysis of 109 studies of the 20-m shuttle run test in 37 countries. Journal of sports sciences. 2006;24(10):1025–38. Epub 2006/11/23. doi: 10.1080/02640410500432193 17115514.
20. Tremblay MS, Shields M, Laviolette M, Craig CL, Janssen I, Connor Gorber S. Fitness of Canadian children and youth: results from the 2007–2009 Canadian Health Measures Survey. Health reports. 2010;21(1):7–20. Epub 2010/04/30. 20426223.
21. Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. International journal of obesity (2005). 2008;32(1):1–11. Epub 2007/11/29. doi: 10.1038/sj.ijo.0803774 18043605.
22. N P, G R, H M. The Physical Self Description Questionnaire: Furthering research linking physical self-concept, physical activity and physical education. Australian Association for Research in Education Parramatta2005.
23. Telama R, Yang X, Viikari J, Valimaki I, Wanne O, Raitakari O. Physical activity from childhood to adulthood: a 21-year tracking study. American journal of preventive medicine. 2005;28(3):267–73. Epub 2005/03/16. doi: 10.1016/j.amepre.2004.12.003 15766614.
24. Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, Paffenbarger J, Ralph S., et al. Relationship Between Low Cardiorespiratory Fitness and Mortality in Normal-Weight, Overweight, and Obese Men. Jama. 1999;282(16):1547–53. doi: 10.1001/jama.282.16.1547 10546694
25. Katzmarzyk PT, Church TS, Janssen I, Ross R, Blair SN. Metabolic Syndrome, Obesity, and Mortality. Diabetes Care. 2005;28(2):391. doi: 10.2337/diacare.28.2.391 15677798
26. Lavie CJ, McAuley PA, Church TS, Milani RV, Blair SN. Obesity and Cardiovascular Diseases. Implications Regarding Fitness, Fatness, and Severity in the Obesity Paradox. 2014;63(14):1345–54. doi: 10.1016/j.jacc.2014.01.022 24530666
27. Cohen DD, Voss C, Sandercock GR. Fitness Testing for Children: Let's Mount the Zebra! Journal of physical activity & health. 2015;12(5):597–603. Epub 2014/06/07. doi: 10.1123/jpah.2013-0345 24905807.
28. Artero EG, Lee D-c, Lavie CJ, España-Romero V, Sui X, Church TS, et al. Effects of muscular strength on cardiovascular risk factors and prognosis. Journal of cardiopulmonary rehabilitation and prevention. 2012;32(6):351–8. doi: 10.1097/HCR.0b013e3182642688 22885613.
29. Yang J, Christophi CA, Farioli A, Baur DM, Moffatt S, Zollinger TW, et al. Association Between Push-up Exercise Capacity and Future Cardiovascular Events Among Active Adult MenPush-up Exercise Capacity and Future Cardiovascular Events in Active Adult MenPush-up Exercise Capacity and Future Cardiovascular Events in Active Adult Men. JAMA Network Open. 2019;2(2):e188341–e. doi: 10.1001/jamanetworkopen.2018.8341 30768197
30. Celis-Morales CA, Welsh P, Lyall DM, Steell L, Petermann F, Anderson J, et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants. BMJ. 2018;361:k1651. doi: 10.1136/bmj.k1651 29739772
31. Beyer SE, Sanghvi MM, Aung N, Hosking A, Cooper JA, Paiva JM, et al. Prospective association between handgrip strength and cardiac structure and function in UK adults. PloS one. 2018;13(3):e0193124. doi: 10.1371/journal.pone.0193124 29538386
32. Wu Y, Wang W, Liu T, Zhang D. Association of Grip Strength With Risk of All-Cause Mortality, Cardiovascular Diseases, and Cancer in Community-Dwelling Populations: A Meta-analysis of Prospective Cohort Studies. Journal of the American Medical Directors Association. 2017;18(6):551.e17–.e35. doi: 10.1016/j.jamda.2017.03.011 28549705
33. Marsaux CF, Celis-Morales C, Hoonhout J, Claassen A, Goris A, Forster H, et al. Objectively Measured Physical Activity in European Adults: Cross-Sectional Findings from the Food4Me Study. PloS one. 2016;11(3):e0150902. Epub 2016/03/22. doi: 10.1371/journal.pone.0150902 26999053; PubMed Central PMCID: PMC4801355.
34. Kuh D, Bassey EJ, Butterworth S, Hardy R, Wadsworth ME. Grip strength, postural control, and functional leg power in a representative cohort of British men and women: associations with physical activity, health status, and socioeconomic conditions. The journals of gerontology Series A, Biological sciences and medical sciences. 2005;60(2):224–31. Epub 2005/04/09. doi: 10.1093/gerona/60.2.224 15814867.
35. Weston KL, Pasecinic N, Basterfield L. A Preliminary Study of Physical Fitness in 8- to 10-Year-Old Primary School Children From North East England in Comparison With National and International Data. Pediatric Exercise Science. 2019;17(0):1–9. doi: 10.1123/pes.2018-0135 30651046.
36. Aoyagi K, Ross PD, Nevitt MC, Davis JW, Wasnich RD, Hayashi T, et al. Comparison of performance-based measures among native Japanese, Japanese-Americans in Hawaii and Caucasian women in the United States, ages 65 years and over: a cross-sectional study. BMC geriatrics. 2001;1:3–. doi: 10.1186/1471-2318-1-3 11696243.
37. Bohannon RW, Peolsson A, Massy-Westropp N, Desrosiers J, Bear-Lehman J. Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy. 2006;92(1):11–5. https://doi.org/10.1016/j.physio.2005.05.003.
38. Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand Grip Strength: age and gender stratified normative data in a population-based study. BMC research notes. 2011;4:127–. doi: 10.1186/1756-0500-4-127 21492469.
39. Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Archives of physical medicine and rehabilitation. 1985;66(2):69–74. Epub 1985/02/01. 3970660.
40. Hanten WP, Chen WY, Austin AA, Brooks RE, Carter HC, Law CA, et al. Maximum grip strength in normal subjects from 20 to 64 years of age. Journal of hand therapy: official journal of the American Society of Hand Therapists. 1999;12(3):193–200. Epub 1999/08/25. 10459527.
41. Rantanen T, Masaki K, Foley D, Izmirlian G, White L, Guralnik JM. Grip strength changes over 27 yr in Japanese-American men. Journal of applied physiology (Bethesda, Md: 1985). 1998;85(6):2047–53. Epub 1998/12/08. doi: 10.1152/jappl.1998.85.6.2047 9843525.
42. Wang Y-C, Bohannon RW, Li X, Sindhu B, Kapellusch J. Hand-Grip Strength: Normative Reference Values and Equations for Individuals 18 to 85 Years of Age Residing in the United States. Journal of Orthopaedic & Sports Physical Therapy. 2018;48(9):685–93. doi: 10.2519/jospt.2018.7851 29792107
43. Gilbertson L, Barber-Lomax S. Power and Pinch Grip Strength Recorded Using the Hand-Held Jamar® Dynamometer and B+L Hydraulic Pinch Gauge: British Normative Data for Adults. British Journal of Occupational Therapy. 1994;57(12):483–8. doi: 10.1177/030802269405701209
44. Kjær IGH, Torstveit MK, Kolle E, Hansen BH, Anderssen SA. Normative values for musculoskeletal- and neuromotor fitness in apparently healthy Norwegian adults and the association with obesity: a cross-sectional study. BMC sports science, medicine & rehabilitation. 2016;8:37–. doi: 10.1186/s13102-016-0059-4 27891234.
45. Brown DA, Miller WC. Normative data for strength and flexibility of women throughout life. European journal of applied physiology and occupational physiology. 1998;78(1):77–82. Epub 1998/07/11. doi: 10.1007/s004210050390 9660160.
46. Flodström F, Heijne A, Batt ME, Frohm A. THE NINE TEST SCREENING BATTERY—NORMATIVE VALUES ON A GROUP OF RECREATIONAL ATHLETES. International journal of sports physical therapy. 2016;11(6):936–44. 27904795.
47. Negrete RJ, Hanney WJ, Kolber MJ, Davies GJ, Ansley MK, McBride AB, et al. Reliability, Minimal Detectable Change, and Normative Values for Tests of Upper Extremity Function and Power. The Journal of Strength & Conditioning Research. 2010;24(12):3318–25. doi: 10.1519/JSC.0b013e3181e7259c 00124278-201012000-00017. 21088548
48. Sayegh S, Van Der Walt M, Al-Kuwari MG. One-year assessment of physical activity level in adult Qatari females: a pedometer-based longitudinal study. International journal of women's health. 2016;8:287–93. doi: 10.2147/IJWH.S99943 27486343.
49. Klautzer L, Becker J, Mattke S. The curse of wealth—Middle Eastern countries need to address the rapidly rising burden of diabetes. International journal of health policy and management. 2014;2(3):109–14. doi: 10.15171/ijhpm.2014.33 24757686.
50. Arazi H, Hosseini R. A Comparison of Physical Self-Concept between Physical Education and Non- Physical Education University Students. 2013;5(10):6. https://doi.org/10.2478/tperj-2013-0001.
51. Lemoyne J, Valois P, Guay F. Physical self-concept and participation in physical activity in college students. Medicine and science in sports and exercise. 2015;47(1):142–50. Epub 2014/05/16. doi: 10.1249/MSS.0000000000000378 24824773.
52. Marsh HW, Papaioannou A, Theodorakis Y. Causal ordering of physical self-concept and exercise behavior: reciprocal effects model and the influence of physical education teachers. Health psychology: official journal of the Division of Health Psychology, American Psychological Association. 2006;25(3):316–28. Epub 2006/05/25. doi: 10.1037/0278-6133.25.3.316 16719603.
53. Suni J, Husu P, Rinne M. Fitness for Health: The ALPHA-FIT Test Battery for Adults Aged 18–69. In: Research UIfHP, editor. Tampere, Finland: European Union, DG SANCO; 2009.
54. Marsh HW, Martin AJ, Jackson S. Introducing a Short Version of the Physical Self Description Questionnaire: New Strategies, Short-Form Evaluative Criteria, and Applications of Factor Analyses. Journal of Sport and Exercise Psychology. 2010;32(4):438–82. doi: 10.1123/jsep.32.4.438 20733208
55. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Medicine and science in sports and exercise. 2009;41(1):3–13. Epub 2008/12/19. doi: 10.1249/MSS.0b013e31818cb278 19092709.
56. Hommel G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika. 1988;75(2):383–6. doi: 10.1093/biomet/75.2.383
57. Lo S, Andrews S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Frontiers in psychology. 2015;6:1171–. doi: 10.3389/fpsyg.2015.01171 26300841.
58. Vandenbogaerde TJ, Hopkins WG. Monitoring acute effects on athletic performance with mixed linear modeling. Medicine and science in sports and exercise. 2010;42(7):1339–44. Epub 2010/01/14. doi: 10.1249/MSS.0b013e3181cf7f3f 20068494.
59. West BT, Welch KB, Galecki AT. Linear Mixed Models: A Practical Guide Using Statistical Software. 2nd ed: Taylor and Francis; 2014.
60. Hopkins WG. A Spreadsheet for Deriving a Confidence Interval, Mechanistic Inference and Clinical Inference from a P Value. 2007;11:16–20.
61. Hopkins WG. Linear models and effect magnitudes. Sportscience. 2010;14(49–58).
62. Al-Nakeeb Y, Lyons M, Dodd LJ, Al-Nuaim A. An investigation into the lifestyle, health habits and risk factors of young adults. International journal of environmental research and public health. 2015;12(4):4380–94. Epub 2015/04/29. doi: 10.3390/ijerph120404380 25913183; PubMed Central PMCID: PMC4410253.
63. Fess EE. Grip Strength. In: Casanova JS, editor. Clinical assessment recommendations. 2nd ed. Chicago: American Society of Hand Therapists; 1992. p. 41–5.
64. Al Barwani S, Al Abri M, Al Hashmi K, Al Shukeiry M, Tahlilkar K, Al Zuheibi T, et al. Assessment of aerobic fitness and its correlates in Omani adolescents using the 20-metre shuttle run test: A pilot study. Journal for scientific research Medical sciences. 2001;3(2):77–80. 24019712.
65. Jones MT, Jagim AR, Haff GG, Carr PJ, Martin J, Oliver JM. Greater Strength Drives Difference in Power between Sexes in the Conventional Deadlift Exercise. Sports (Basel, Switzerland). 2016;4(3):43. doi: 10.3390/sports4030043 29910289.
66. Al-Mallah MH, Juraschek SP, Whelton S, Dardari ZA, Ehrman JK, Michos ED, et al. Sex Differences in Cardiorespiratory Fitness and All-Cause Mortality: The Henry Ford ExercIse Testing (FIT) Project. Mayo Clinic proceedings. 2016;91(6):755–62. Epub 05/06. doi: 10.1016/j.mayocp.2016.04.002 27161032.
67. Gómez-Campos R, Andruske CL, Arruda Md, Sulla-Torres J, Pacheco-Carrillo J, Urra-Albornoz C, et al. Normative data for handgrip strength in children and adolescents in the Maule Region, Chile: Evaluation based on chronological and biological age. PloS one. 2018;13(8):e0201033–e. doi: 10.1371/journal.pone.0201033 30091984.
68. Daradkeh G, Al-Muhannadi A, Chandra P, Al-Hajr M, Al-Muhannadi H. Physical Activity Profile of Adolescence in the State of Qatar. ARC Journal of Nutrition and Growth. 2015;1(1):7.
69. Benjamin K, Donnelly TT. Barriers and facilitators influencing the physical activity of Arabic adults: A literature review. Avicenna. 2013;2013(1):8. doi: 10.5339/avi.2013.8
70. Berger G, Peerson A. Giving young Emirati women a voice: participatory action research on physical activity. Health & place. 2009;15(1):117–24. Epub 2008/06/03. doi: 10.1016/j.healthplace.2008.03.003 18515171.
71. Batnitzky A. Obesity and household roles: gender and social class in Morocco. Sociology of health & illness. 2008;30(3):445–62. Epub 2008/04/01. doi: 10.1111/j.1467-9566.2007.01067.x 18373507.
72. Batnitzky AK. Cultural constructions of "obesity": understanding body size, social class and gender in Morocco. Health & place. 2011;17(1):345–52. Epub 2010/12/28. doi: 10.1016/j.healthplace.2010.11.012 21185216.
73. Pope HG Jr., Gruber AJ, Mangweth B, Bureau B, deCol C, Jouvent R, et al. Body image perception among men in three countries. The American journal of psychiatry. 2000;157(8):1297–301. Epub 2000/07/27. doi: 10.1176/appi.ajp.157.8.1297 10910794.
74. Dun S. Role Models in the Media and Women's Sport Participation in Qatar. NIDABA—An Interdisciplinary Journal of Middle East Studies. 2016;1(1):48–58.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis