Low-glutathione mutants are impaired in growth but do not show an increased sensitivity to moderate water deficit
Autoři:
Sajid A. K. Bangash aff001; Stefanie J. Müller-Schüssele aff001; David Solbach aff001; Marcus Jansen aff002; Fabio Fiorani aff002; Markus Schwarzländer aff001; Stanislav Kopriva aff004; Andreas J. Meyer aff001
Působiště autorů:
INRES–Chemical Signalling, University of Bonn, Bonn, Germany
aff001; IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
aff002; Bioeconomy Science Center, c/o Forschungszentrum Jülich, Jülich, Germany
aff003; Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0220589
Souhrn
Glutathione is considered a key metabolite for stress defense and elevated levels have frequently been proposed to positively influence stress tolerance. To investigate whether glutathione affects plant performance and the drought tolerance of plants, wild-type Arabidopsis plants and an allelic series of five mutants (rax1, pad2, cad2, nrc1, and zir1) with reduced glutathione contents between 21 and 63% compared to wild-type glutathione content were phenotypically characterized for their shoot growth under control and water-limiting conditions using a shoot phenotyping platform. Under non-stress conditions the zir1 mutant with only 21% glutathione showed a pronounced dwarf phenotype. All other mutants with intermediate glutathione contents up to 62% in contrast showed consistently slightly smaller shoots than the wild-type. Moderate drought stress imposed through water withdrawal until shoot growth ceased showed that wild-type plants and all mutants responded similarly in terms of chlorophyll fluorescence and growth retardation. These results lead to the conclusion that glutathione is important for general plant performance but that the glutathione content does not affect tolerance to moderate drought conditions typically experienced by crops in the field.
Klíčová slova:
Phenotypes – Plant resistance to abiotic stress – Leaves – Water resources – Seedlings – Drought adaptation – Glutathione – Arabidopsis thaliana
Zdroje
1. Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant. 2010; 3:469–490. doi: 10.1093/mp/ssq016 20507936
2. Claeys H, Inzé D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol. 2013; 162:1768–1779. doi: 10.1104/pp.113.220921 23766368
3. Slattery RA, Ainsworth EA, Ort DR. A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveals major causes of yield gap. J Exp Bot. 2013; 64:3723–3733. doi: 10.1093/jxb/ert207 23873996
4. Deryng D, Conway D, Ramankutty N, Price J, Warren R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett. 2014; 9:034011.
5. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, et al. Glutathione in plants: an integrated overview. Plant Cell Environ. 2012; 35:454–484. doi: 10.1111/j.1365-3040.2011.02400.x 21777251
6. Petrov VD, Van Breusegem F. Hydrogen peroxide—a central hub for information flow in plant cells. AoB PLANTS. 2012; 2012:pls014.
7. Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Res Int. 2019; 2019:9732325. doi: 10.1155/2019/9732325 31205950
8. Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol. 1998; 49:249–279.
9. Melandri G, Abdelgawad H, Riewe D, Hageman JA, Asard H, Beemster GTS, et al. Biomarkers for grain yield stability in rice under drought stress. J Exp Bot. 2019; Forthcoming. doi: 10.1093/jxb/erz221/5489278 31087074
10. Marty L, Siala W, Schwarzländer M, Fricker MD, Wirtz M, Sweetlove LJ, et al. The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci-USA. 2009; 106:9109–9114. doi: 10.1073/pnas.0900206106 19451637
11. Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, et al. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol. 2010; 153:1144–1160. doi: 10.1104/pp.110.153767 20488891
12. Meyer AJ. The integration of glutathione homeostasis and redox signaling. J Plant Physiol. 2008; 165:1390–1403. doi: 10.1016/j.jplph.2007.10.015 18171593
13. Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot J‐ P, et al. Redox‐sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J. 2007; 52:973–986. doi: 10.1111/j.1365-313X.2007.03280.x 17892447
14. Schwarzländer M, Fricker M, Müller C, Marty L, Brach T, Novak J, et al. Confocal imaging of glutathione redox potential in living plant cells. J Microsc-Oxford. 2008; 231:299–316.
15. Jez JM, Cahoon RE, Chen S. Arabidopsis thaliana Glutamate-cysteine ligase functional properties, kinetic mechanism, and regulation of activity. J Biol Chem. 2004; 279:33463–33470. doi: 10.1074/jbc.M405127200 15180996
16. Howden R, Andersen CR, Goldsbrough PB, Cobbett CS. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol. 1995; 107:1067–1073. doi: 10.1104/pp.107.4.1067 7770518
17. Ball L, Accotto G-P, Bechtold U, Creissen G, Funck D, Jimenez A, et al. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell. 2004; 16:2448–2462. doi: 10.1105/tpc.104.022608 15308753
18. Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch, F. Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 2007; 49:159–172. doi: 10.1111/j.1365-313X.2006.02938.x 17144898
19. Jobe TO, Sung DY, Akmakjian G, Pham A, Komives EA, Mendoza‐Cózatl DG, et al. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation. Plant J. 2012; 70:783–795. doi: 10.1111/j.1365-313X.2012.04924.x 22283708
20. Shanmugam V, Tsednee M, Yeh KC. ZINC TOLERANCE INDUCED BY IRON 1 reveals the importance of glutathione in the cross‐homeostasis between zinc and iron in Arabidopsis thaliana. Plant J. 2012; 69:1006–1017. doi: 10.1111/j.1365-313X.2011.04850.x 22066515
21. Vernoux T, Wilson RC, Seeley KA, Reichheld J-P, Muroy S, Brown S, et al. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell. 2000; 12:97–109. doi: 10.1105/tpc.12.1.97 10634910
22. Schnaubelt D, Schulz P, Hannah MA, Yocgo RE, Foyer CH. A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana. Front Plant Sci. 2013; 4:416. doi: 10.3389/fpls.2013.00416 24204368
23. Pei Z-M, Murata Y, Benning G, Thomine S. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 2000; 406:731–734. doi: 10.1038/35021067 10963598
24. Murata Y, Mori IC, Munemasa S. Diverse stomatal signaling and the signal integration mechanism. Annu Rev Plant Biol. 2015; 66:369–392. doi: 10.1146/annurev-arplant-043014-114707 25665132
25. Karpinska B, Alomrani SO, Foyer CH. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling. Phil T R Soc B. 2017; 372:20160392.
26. Meyer AJ, Dick TP. Fluorescent protein-based redox probes. Antioxid Redox Sign. 2010; 13:621–650.
27. Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Sign. 2016; 24:680–712.
28. Schwarzländer M, Fricker MD, Sweetlove LJ. Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. BBA-Bioenergetics. 2009; 1787:468–475. doi: 10.1016/j.bbabio.2009.01.020 19366606
29. Jubany-Mari T, Alegre-Batlle L, Jiang K, Feldman L. Use of a redox‐sensing GFP (c‐roGFP1) for real‐time monitoring of cytosol redox status in Arabidopsis thaliana water‐stressed plants. FEBS Lett. 2010; 584:889–897. doi: 10.1016/j.febslet.2010.01.014 20079738
30. Kumar D, Datta R, Sinha R, Ghosh A, Chattopadhyay S. Proteomic profiling of γ-ECS overexpressed transgenic Nicotiana in response to drought stress. Plant Signal Behav. 2014; 9:e29246. doi: 10.4161/psb.29246 25763614
31. Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J. 2015; 83:926–939. doi: 10.1111/tpj.12940 26213235
32. Jubany-Marí T, Meehan S, López-Carbonell M, Alegre L. Water-deficit response is not affected by glutathione deficiency in Arabidopsis thaliana pad2-1 plants. Am J Plant Sci. 2016; 7:2020.
33. Schnaubelt D, Queval G, Dong Y, Diaz-Vivancos P, Makgopa ME, Howell G, et al. Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ. 2015; 38:266–279. doi: 10.1111/pce.12252 24329757
34. Lawlor DW. Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot. 2013; 64:83–108. doi: 10.1093/jxb/ers326 23162116
35. Harb A, Krishnan A, Ambavaram MMR, Pereira A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol. 2010; 154:1254–1271. doi: 10.1104/pp.110.161752 20807999
36. Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, et al. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol. 2009; 36:902–914.
37. Barboza-Barquero L, Nagel KA, Jansen M, Klasen JR, Kastenholz B, Braun S, et al. Phenotype of Arabidopsis thaliana semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the GA5 loss-of-function alleles. Ann Bot-London. 2015; 116:321–331.
38. Fricker MD. Quantitative redox imaging software. Antioxid Redox Sign. 2016; 24:752–762.
39. Lim B, Smirnoff N, Cobbett CS, Golz JF. Ascorbate-deficient vtc2 mutants in Arabidopsis do not exhibit decreased growth. Front Plant Sci. 2016; 7:1025. doi: 10.3389/fpls.2016.01025 27468291
40. Deponte M. The incomplete glutathione puzzle: just guessing at numbers and figures? Antioxid Redox Sign. 2017; 27:1130–1161.
41. Sousa Silva M, Gomes RA, Ferreira AE, Ponces Freire A, Cordeiro C. The glyoxalase pathway: the first hundred years … and beyond. Biochem J. 2013; 453:1–15. doi: 10.1042/BJ20121743 23763312
42. Moseler A, Aller I, Wagner S, Nietzel T, Przybyla-Toscano J, Mühlenhoff U, et al. The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana. P Natl Acad Sci-USA. 2015; 112:13735–13740.
43. Geu-Flores F, Nielsen MT, Nafisi M, Moldrup ME, Olsen CE, Motawia MS, et al. Glucosinolate engineering identifies a gamma-glutamyl peptidase. Nat Chem Biol. 2009; 5:575–577. doi: 10.1038/nchembio.185 19483696
44. Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol. 2002; 3:3004.
45. Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E. Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol. 2015; 32:186–194. doi: 10.1016/j.copbio.2014.12.024 25614070
46. Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011; 155:2–18. doi: 10.1104/pp.110.167569 21205630
47. Meyer AJ, May MJ, Fricker M. Quantitative in vivo measurement of glutathione in Arabidopsis cells. Plant J. 2001; 27:67–78. doi: 10.1046/j.1365-313x.2001.01071.x 11489184
48. Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol. 2013; 64:267–291. doi: 10.1146/annurev-arplant-050312-120137 23451789
49. Woo N, Badger M, Pogson B. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Meth. 2008; 4:27.
50. Sperdouli I, Moustakas M. Spatio‐temporal heterogeneity in Arabidopsis thaliana leaves under drought stress. Plant Biol. 2012; 14:118–128. doi: 10.1111/j.1438-8677.2011.00473.x 21972900
51. Müller-Moulé P, Golan T, Niyogi KK. Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol. 2004; 134:1163–1172. doi: 10.1104/pp.103.032375 14963245
52. Chen J-H, Jiang H-W, Hsieh E-J, Chen H-Y, Chien C-T, Hsieh H-L, et al. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 2012; 158:340–351. doi: 10.1104/pp.111.181875 22095046
53. Lechner L, Pereyra-Irujo GA, Granier C, Aguirrezábal LAN. Rewatering plants after a long water-deficit treatment reveals that leaf epidermal cells retain their ability to expand after the leaf has apparently reached its final size. Ann Bot-London. 2008; 101:1007–1015.
54. Skirycz A, Inze D. More from less: plant growth under limited water. Curr Opin Biotechnol. 2010; 21:197–203. doi: 10.1016/j.copbio.2010.03.002 20363612
55. Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ. The role of the plant antioxidant system in drought tolerance. Antioxidants. 2019; 8:94.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis