Artificial fingerprints for cross-comparison of forensic DNA and protein recovery methods
Autoři:
Danielle S. LeSassier aff001; Kathleen Q. Schulte aff001; Tara E. Manley aff001; Alan R. Smith aff001; Megan L. Powals aff001; Nicolette C. Albright aff001; Benjamin C. Ludolph aff001; Katharina L. Weber aff001; August E. Woerner aff002; Myles W. Gardner aff001; F. Curtis Hewitt aff001
Působiště autorů:
Signature Science, LLC, Austin, Texas, United States of America
aff001; Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
aff002; Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223170
Souhrn
Quantitative genomic and proteomic evaluation of human latent fingerprint depositions represents a challenge within the forensic field, due to the high variability in the amount of DNA and protein initially deposited. To better assess recovery techniques for touch depositions, we present a method to produce simple and customizable artificial fingerprints. These artificial fingerprint samples include the primary components of a typical latent fingerprint, specifically sebaceous fluid, eccrine perspiration, extracellular DNA, and proteinaceous epidermal skin material (i.e., shed skin cells). A commercially available emulsion of sebaceous and eccrine perspiration material provides a chemically-relevant suspension solution for fingerprint deposition, simplifying artificial fingerprint production. Extracted human genomic DNA is added to accurately mimic the extracellular DNA content of a typical latent print and comparable DNA yields are recovered from the artificial prints relative to human prints across surface types. Capitalizing on recent advancements in the use of protein sequence identification for human forensic analysis, these samples also contain a representative quantity of protein, originating from epidermal skin cells collected from the fingers and palms of volunteers. Proteomic sequencing by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis indicates a high level of protein overlap between artificial and latent prints. Data are available via ProteomeXchange with identifier PXD015445. By including known quantities of DNA and protein into each artificial print, this method enables total DNA and protein recovery to be quantitatively assessed across different sample collection and extraction methods to better evaluate extraction efficiency. Collectively, these artificial fingerprint samples are simple to make, highly versatile and customizable, and accurately represent the biochemical composition and biological signatures of human fingerprints.
Klíčová slova:
Glass – DNA extraction – Genetic fingerprinting – Chemical deposition – Keratins – Cytoskeleton – Forensics – Dactyloscopy
Zdroje
1. Burrill J, Daniel B, Frascione N. A review of trace “Touch DNA” deposits: Variability factors and an exploration of cellular composition. Forensic Sci Int Genet. 2019 Mar;39:8–18. doi: 10.1016/j.fsigen.2018.11.019 30513439
2. Girod A, Ramotowski R, Weyermann C. Composition of fingermark residue: A qualitative and quantitative review. Forensic Sci Int. 2012 Nov;223(1–3):10–24. doi: 10.1016/j.forsciint.2012.05.018 22727572
3. Solomon AD, Hytinen ME, McClain AM, Miller MT, Dawson Cruz T. An Optimized DNA Analysis Workflow for the Sampling, Extraction, and Concentration of DNA obtained from Archived Latent Fingerprints. J Forensic Sci. 2018 Jan;63(1):47–57. doi: 10.1111/1556-4029.13504 28382646
4. LaPorte G, Waltke H, Heurich C, Chase RJ. Forensic Science Report: Fiscal Year 2017 Funding for DNA Analysis, Capacity Enhancement, and Other Forensic Activities. National Institute of Justice; 2018 Apr p. 20. Report No.: NCJ 251445.
5. Goodwin GL. DNA Evidence: Preliminary Observations on DOJ’s DNA Capacity Enhancement and Backlog Reduction Grant Program [Internet]. Sect. Committee on the Judiciary, U.S. Senate, GAO-18-651T Jul 18, 2018 p. 20. https://www.gao.gov/products/GAO-18-651T
6. Mason KE, Anex D, Grey T, Hart B, Parker G. Protein-based forensic identification using genetically variant peptides in human bone. Forensic Sci Int. 2018 Jul;288:89–96. doi: 10.1016/j.forsciint.2018.04.016 29738994
7. Mason KE, Paul PH, Chu F, Anex DS, Hart BR. Development of a Protein‐based Human Identification Capability from a Single Hair. J Forensic Sci. 2019 Jul;64(4):1152–9. doi: 10.1111/1556-4029.13995 30735575
8. Parker GJ, Leppert T, Anex DS, Hilmer JK, Matsunami N, Baird L, et al. Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome. Calafell F, editor. PLOS ONE. 2016 Sep 7;11(9):e0160653. doi: 10.1371/journal.pone.0160653 27603779
9. Oonk S, Schuurmans T, Pabst M, de Smet LCPM, de Puit M. Proteomics as a new tool to study fingermark ageing in forensics. Sci Rep. 2018 Dec;8(1):16425. doi: 10.1038/s41598-018-34791-z 30401937
10. Sisco E, Staymates J, Schilling K. A chemically relevant artificial fingerprint material for the cross-comparison of mass spectrometry techniques. Can Soc Forensic Sci J. 2015 Oct 2;48(4):200–14.
11. Hong S, Hong I, Han A, Seo JY, Namgung J. A new method of artificial latent fingerprint creation using artificial sweat and inkjet printer. Forensic Sci Int. 2015 Dec;257:403–8. doi: 10.1016/j.forsciint.2015.10.005 26555502
12. Staymates JL, Staymates ME, Gillen G. Evaluation of a drop-on-demand micro-dispensing system for development of artificial fingerprints. Anal Methods. 2013;5(1):180–6.
13. Button JM. Analysis of cellular and extracellular DNA in fingerprints [Internet]. United States: Lawrence Livermore National Lab. (LLNL), Livermore, CA; 2014 Sep [cited 2019 May 6] p. LLNL-TR—659969, 1169860. Report No.: LLNL-TR-659969. http://www.osti.gov/servlets/purl/1169860/
14. Quinones I, Daniel B. Cell free DNA as a component of forensic evidence recovered from touched surfaces. Forensic Sci Int Genet. 2012 Jan;6(1):26–30. doi: 10.1016/j.fsigen.2011.01.004 21292581
15. Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, et al. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 2017 04;45(D1):D1100–6. doi: 10.1093/nar/gkw936 27924013
16. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019 Jan 8;47(D1):D442–50. doi: 10.1093/nar/gky1106 30395289
17. Girod A, Weyermann C. Lipid composition of fingermark residue and donor classification using GC/MS. Forensic Sci Int. 2014 May;238:68–82. doi: 10.1016/j.forsciint.2014.02.020 24675043
18. Croxton RS, Baron MG, Butler D, Kent T, Sears VG. Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci Int. 2010 Jun;199(1–3):93–102. doi: 10.1016/j.forsciint.2010.03.019 20413233
19. Stanciu CE, Philpott MK, Kwon YJ, Bustamante EE, Ehrhardt CJ. Optical characterization of epidermal cells and their relationship to DNA recovery from touch samples. F1000Research [Internet]. 2015 Nov 26 [cited 2019 May 10];4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732551/
20. Kita T, Yamaguchi H, Yokoyama M, Tanaka T, Tanaka N. Morphological study of fragmented DNA on touched objects. Forensic Sci Int Genet. 2008 Dec;3(1):32–6. doi: 10.1016/j.fsigen.2008.09.002 19083864
21. Holt A, Wootton SC, Mulero JJ, Brzoska PM, Langit E, Green RL. Developmental validation of the Quantifiler® HP and Trio Kits for human DNA quantification in forensic samples. Forensic Sci Int Genet. 2016 Mar;21:145–57. doi: 10.1016/j.fsigen.2015.12.007 26774100
22. Breuza L, Poux S, Estreicher A, Famiglietti ML, Magrane M, Tognolli M, et al. The UniProtKB guide to the human proteome. Database. 2016;2016:bav120. doi: 10.1093/database/bav120 26896845
23. Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004 Jul 15;76(14):4193–201. doi: 10.1021/ac0498563 15253663
24. Frick AA, Chidlow G, Lewis SW, van Bronswijk W. Investigations into the initial composition of latent fingermark lipids by gas chromatography–mass spectrometry. Forensic Sci Int. 2015 Sep;254:133–47. doi: 10.1016/j.forsciint.2015.06.032 26232846
25. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr;362(6422):709–15. doi: 10.1038/362709a0 8469282
26. Wadsworth C, Buckley M. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone: Proteome degradation in fossils. Rapid Commun Mass Spectrom. 2014 Mar 30;28(6):605–15.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis