Variation in Neotropical river otter (Lontra longicaudis) diet: Effects of an invasive prey species
Autoři:
Diego Juarez-Sanchez aff001; John G. Blake aff001; Eric C. Hellgren aff001
Působiště autorů:
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0217727
Souhrn
Predation is one of the main barriers that exotic species may face in newly colonized areas and may help stop or control the potential negative impacts of invasive species in the environment. We evaluated if the consumption of an invasive prey (armored catfish: Pterygoplichtys sp.) affects the dietary niche breadth and trophic level of a native predator (Neotropical river otter: Lontra longicaudis) in northern Guatemala. We examined otter scats from three rivers: two where the invasive armored catfish occurred and one without the invasive fish. Samples were collected two and seven years after the first report of the catfish in the area. We performed gross scat analysis and stable isotope analyses of nitrogen and carbon of fecal matter. Where the invasive armored catfish occurred, it was the main prey item for L. longicaudis. Particularly in the river outside of protected areas seven years after the first report of the catfish, where it accounted for 49% of the otter diet. Concordance was found between the two techniques to estimate dietary niche breadth and trophic level. The dietary niche breath of otters was narrower seven years after the invasion in comparison to two years after the invasion in both invaded rivers, but the extent of the reduction was lesser inside the protected area. Finally, the trophic level of otters also showed a reduction related to the occurrence of the armored catfish in their diet.
Klíčová slova:
Trophic interactions – Predation – Ecological niches – Invasive species – Rivers – Otters – Freshwater fish – Catfish
Zdroje
1. Tablado Z, Tella JL, Sánchez-Zapata JA, Hiraldo F. The paradox of the long-term positive effects of a North American crayfish on a European community of predators. Conserv Biol. 2010;24: 1230–1238. doi: 10.1111/j.1523-1739.2010.01483.x 20337679
2. Cattau CE, Fletcher RJ Jr, Kimball RT, Miller CW, Kitchens WM. Rapid morphological change of a top predator with the invasion of a novel prey. Nat Ecol Evol. Springer US; 2017; 1–8. doi: 10.1038/s41559-016-0001
3. Cattau CE, Fletcher RJ Jr., Reichert BE, Kitchens WM. Counteracting effects of a non-native prey on the demography of a native predator culminate in positive population growth. Ecol Appl. 2016;26: 1952–1968. doi: 10.1890/15-1020.1 27755742
4. King RB, Ray JM, Stanford KM. Gorging on gobies: Beneficial effects of alien prey on a threatened vertebrate. Can J Zool. 2006;84: 108–115. doi: 10.1139/z05-182
5. Layman CA, Quattrochi JP, Peyer CM, Allgeier JE. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol Lett. 2007;10: 937–944. doi: 10.1111/j.1461-0248.2007.01087.x 17845294
6. Fricke R, Eschmeyer WN, Van Der Laan R. Catalog of Fishes. In: 04-September-2018 [Internet]. 2018 [cited 6 Sep 2018]. doi: 10.11646/zootaxa.3882.1.1
7. Nico LG, Jelks HL, Tuten T. Non-native suckermouth armored catfishes in Florida: Description of nest burrows and burrow colonies with assessment of shoreline conditions. Aquat Nuis Species Res Bull. 2009;9: 1–30.
8. Capps K a., Nico LG, Mendoza-Carranza M, Arévalo-Frías W, Ropicki AJ, Heilpern S a., et al. Salinity tolerance of non-native suckermouth armoured catfish (Loricariidae: Pterygoplichthys) in south-eastern Mexico: Implications for invasion and dispersal. Aquat Conserv Mar Freshw Ecosyst. 2011;21: 528–540. doi: 10.1002/aqc.1210
9. da Cruz AL, da Silva HR, Lundstedt LM, Schwantes AR, Moraes G, Klein W, et al. Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi. Fish Physiol Biochem. 2013;39: 243–256. doi: 10.1007/s10695-012-9695-0 22825808
10. Stevens PW, Blewett DA, Casey JP. Short-term effects of a low dissolved oxygen event on estuarine fish assemblages following the passage of hurricane Charley. Estuaries and Coasts. 2006;29: 997–1003. doi: 10.1007/BF02798661
11. Corcuera Zabarburú CA. Evaluación de la temperatura letal máxima para Hypostomus hemicochiodon y Pterygoplichthys pardalis en el centro de investigaciones Carlos Miguel Castañeda Ruiz. Universidad nacional Toribio Rodríguez de Mendoza de Amazonas. 2015.
12. de Oliveira C, Taboga S. R, Smarra AL, Bonilla-Rodriguez GO. Microscopical aspects of accessory air breathing through a modified stomach in the armoured catfish Liposarcus anisitsi (Siluriformes, Loricariidae). Cytobios. 2001;105: 153–162.
13. Froese R, Pauly D. FishBase. In: 06/2018 [Internet]. 2018 [cited 6 Sep 2018]. Available: www.fishbase.org
14. Gibbs MA, Shields JH, Lock DW, Talmadge KM, Farrell TM. Reproduction in an invasive exotic catfish Pterygoplichthys disjunctivus in Volusia Blue Spring, Florida, U.S.A. J Fish Biol. 2008;73: 1562–1572. doi: 10.1111/j.1095-8649.2008.02031.x
15. Gibbs M a., Kurth BN, Bridges CD. Age and growth of the loricariid catfish Pterygoplichthys disjunctivus in Volusia Blue Spring, Florida. Aquat Invasions. 2013;8: 207–218. doi: 10.3391/ai.2013.8.2.08
16. Marchetti MP, Moyle PB, Levine R. Alien fishes in California watersheds: Characteristics of successful and failed invaders. Ecol Appl. 2004;14: 587–596. doi: 10.1890/02-5301
17. Orfinger AB, Goodding DD. The global invasion of the suckermouth armored catfish genus Pterygoplichthys (Siluriformes: Loricariidae): Annotated list of species, distributional summary, and assessment of impacts. Zool Stud. 2018;57: 1–16. doi: 10.6620/ZS.2018.57–07
18. Wakida-Kusunoki AT, Ruiz-Carus R, Amador-del-Angel E. Amazon sailfin catfish, Pterygoplichthys pardalis (Castelnau, 1855) (Loricariidae), another exotic species established in Southeastern México. Southwest Nat. 2007;52: 141–144. doi: 10.1894/0038-4909(2007)52[141:ASCPPC]2.0.CO;2
19. Wakida-Kusunoki AT, Amador-Del-Angel LE. Nuevos registros de los plecos Pterygoplichthys pardalis (Castelnau 1855) y P. disjunctivus (Weber 1991) (Siluriformes: Loricariidae) en el Sureste de México. Hidrobiologica. 2008;18: 251–255.
20. Hubbs C, Edwards RJ, Garrett GP. An annotated checklist of the freshwater fishes of Texas, with keys to identification of species. Second Edi. Austin: Texas Academy of Science; 2008.
21. Wu L-W, Liu C, Lin S-M. Identification of exotic sailfin catfish species (Pterygoplichthys, Loricariidae) in Taiwan based on morphology and mtDNA sequences. Zool Stud. 2011;50: 235–246.
22. Capps KA, Flecker AS. Invasive fishes generate biogeochemical hotspots in a nutrient-limited system. PLoS One. 2013;8: e54093. doi: 10.1371/journal.pone.0054093 23342083
23. Capps KA, Flecker AS. High impact of low-trophic-position invaders: Nonnative grazers alter the quality and quantity of basal food resources. Freshw Sci. 2015;34: 784–796. doi: 10.1086/681527
24. Bunkley-Williams L, Williams EH Jr., Lilystrom CG, Corujo-Flores I, Zerbi AJ, Aliaume C, et al. The South American sailfin armored catfish, Liposarcus multiradiatus (Hancock), a new exotic established in Puerto Rican fresh waters. Caribb J Sci. 1994;30: 90–94.
25. Chaichana R, Pouangcharean S, Yoonphand R. Foraging effects of the invasive alien fish Pterygoplichthys on eggs and first-feeding fry of the native Clarias macrocephalus in Thailand. Kasetsart J. 2013;47: 581–588.
26. Hubilla M, Kis F, Primavera J. Janitor fish Pterygoplichthys disjunctivus in the Agusan Marsh: A threat to freshwater biodiversity. J Environ Sci Manag. 2007;10: 10–23.
27. Capps KA, Ulseth A, Flecker AS. Quantifying the top-down and bottom-up effects of a non-native grazer in freshwaters. Biol Invasions. 2014;17: 1253–1266. doi: 10.1007/s10530-014-0793-z
28. Nico LG, Loftus WF, Reid JP. Interactions between non-native armored suckermouth catfish (Loricariidae: Pterygoplichthys) and native Florida manatee (Trichechus manatus latirostris) in artesian springs. Aquat Invasions. 2009;4: 511–519. doi: 10.3391/ai.2009.4.3.13
29. Nico LG. Nocturnal and diurnal activity of armored suckermouth catfish (Loricariidae: Pterygoplichthys) associated with wintering Florida manatees (Trichechus manatus latirostris). Neotrop Ichthyol. 2010;8: 893–898. doi: 10.1590/S1679-62252010005000014
30. Gibbs M, Futral T, Mallinger M, Martin D, Ross M. Disturbance of the Florida manatee by an invasive catfish. Southeast Nat. 2010;9: 635–648. doi: 10.1656/058.009.0401
31. Lienart G-DH, Rodiles-Hernández R, Capps KA. Nesting Burrows and Behavior of Nonnative Catfishes (Siluriformes: Loricariidae) in the Usumacinta-Grijalva Watershed, Mexico. Southwest Nat. 2013;58: 238–243. doi: 10.1894/0038-4909-58.2.238
32. Toro-Ramírez A, Wakida-Kusunoki AT, Amador-del Ángel LE, Cruz-Sánchez JL. Common snook [Centropomus undecimalis (Bloch, 1792)] preys on the invasive Amazon sailfin catfish [Pterygoplichthys pardalis (Castelnau, 1855)] in the Palizada River, Campeche, southeastern Mexico. J Appl Ichthyol. 2014;30: 532–534. doi: 10.1111/jai.12391
33. Ríos-Muñoz CA. Depredación de pez diablo (Loricariidae: Pterygoplichthys) por el cormorán oliváceo (Phalacrocorax brasilianus) en Villahermosa, Tabasco, México. Huitzil. 2015;16: 62–65.
34. Kruuk H, Balharry E, Taylor PT. Oxygen consumption of the Eurasian Otter Lutra lutra in relation to water temperature. Physiol Zool. 1994;67: 1174–1185.
35. Pfeiffer P, Culik BM. Energy metabolism of underwater swimming in river-otters (Lutra lutra L.). J Comp Physiol—B Biochem Syst Environ Physiol. 1998;168: 143–148. doi: 10.1007/s003600050130
36. Rheingantz ML, Oliveira-santos LG, Waldemarin HF, Caramaschi EP. Are otters generalists or do they prefer larger, slower prey? Feeding flexibility of the neotropical otter Lontra longicaudis in the Atlantic forest. IUCN Otter Spec Gr Bull. 2012;29: 80–94.
37. Chemes SB, Giraudo AR, Gil G. Dieta de Lontra longicaudis (Carnivora, Mustelidae) en el Parque Nacional El Rey (Salta, Argentina) y su comparación con otras poblaciones de la cuenca. Mastozoología Neotrop. 2010;17: 19–29. doi: 10.2307/3504393
38. Kasper CB, Bastazini VAG, Salvi J, Grillo HCZ. Trophic ecology and the use of shelters and latrines by the Neotropical otter (Lontra longicaudis) in the Taquari Valley, Southern Brazil. Iheringia Série Zool. 2008;98: 469–474.
39. Mayor-Victoria R, Botero-Botero Á. Dieta de la nutria neotropical Lontra longicaudis (Carnívora, mustelidae) en el Río Roble, Alto Cauca, Colombia. Acta Biológica Colomb. 2010;15: 237–244.
40. Silva FA Da Nascimento EDM, Quintela FM. Diet of Lontra longicaudis (Carnivora: Mustelidae) in a pool system in Atlantic forest of Minas Gerais State, southeastern Brazil. Acta Sci Biol Sci. 2012;34: 407–412. doi: 10.4025/actascibiolsci.v34i4.10332
41. Casariego-Madorell A, List R, Ceballos G. ASPECTOS BÁSICOS SOBRE LA ECOLOGÍA DE LA NUTRIA DE RÍO (Lontra longicaudis annectens) PARA LA COSTA DE OAXACA. Rev Mex Mastozoología. 2006;10: 71–74.
42. Monroy-Vilchis O, Mundo V. Nicho trófico de la nutria neotropical (Lontra longicaudis) en un ambiente modificado, Temascaltepec, México. Rev Mex Biodivers. 2009;80: 801–806.
43. Rheingantz ML, Waldemarin HF, Rodrigues L, Moulton TP. Seasonal and spatial differences in feeding habits of the Neotropical otter Lontra longicaudis (Carnivora: Mustelidae) in a coastal catchment of southeastern Brazil. Zoologia. 2011;28: 37–44. doi: 10.1590/S1984-46702011000100006
44. Marques Quintela F, Almeida Porciuncula R, Pinto Colares E. Dieta de Lontra longicaudis (Olfer) (Carnivora, Mustelidae) em um arroio costeiro da região sul do Estado do Rio Grande do Sul, Brasil. Neotrop Biol Conserv. 2008;3: 119–125. doi: 10.4013/nbc.20083.03
45. Sousa KS, Saraiva DD, Colares EP. Intra-annual dietary variation in the neotropical otter from southern Brazil. Mammal Study. 2013;38: 155–162.
46. Kasper CB, Feldens MJ, Salvi J, César H, Grillo Z. Estudo preliminar sobre a ecologia de Lontra longicaudis (Olfers) (Carnivora, Mustelidae) no Vale do Taquari, Sul do Brasil. Rev Bras Zool. 2004;21: 65–72.
47. Pardini R. Feeding ecology of the neotropical river otter Lontra longicaudis in an Atlantic Forest stream, south-eastern Brazil. J Zool. 1998;245: 385–391. doi: 10.1111/j.1469-7998.1998.tb00113.x
48. Holdridge LR, Grenke WC. Forest environments in tropical life zones: a pilot study. 1971.
49. Willink PW, Barrientos C, Kihn HA, Chernoff B. An ichthyological survey of Laguna del Tigre National Park, Peten, Guatemala. In: Bestelmeyer BT, Alonso LE, editors. A biological assessment of Laguna del Tigre National Park, Petén, Guatemala RAP bulleting of biological assessment 16. Washintong, DC: Conservation International; 2000. pp. 41–48.
50. Granados-Dieseldorff P, Christensen MF, Kihn-Pineda PH. Fishes from Lachuá lake, upper Usumacinta basin, guatemala. Check List. 2012;8: 95–101.
51. Greenfield DW, Thomerson JE. Fishes of the continental waters of Belize. Fishes of the continental waters of Belize. University Press of Florida; 1997.
52. Aranda-Sánchez JM. Manual para el rastreo de mamíferos silvestres de México. Primera ed. Suárez Huesca HK, Hernández Vázquez L, Escobar Ramírez F de J, editors. México D.F.: Ciba Diseño y Arte Editorial; 2012.
53. Kasper CB, Salvi J, Zanardi Grillo HC. Estimativa do tamanho de duas espécies de ciclídeos (Osteichthyes, Perciformes) predados por Lontra longicaudis (Olfers) (Carnivora, Mustelidae), através de análise das escamas. Rev Bras Zool. 2004;21: 499–503.
54. Juárez-Sánchez D. Scale guide to identify medium and large freshwater fish from northern Guatemala [Internet]. University of Florida. 2017. Available: http://ufdc.ufl.edu/l/IR00009693/00001
55. Juárez-Sánchez D, Estrada C, Bustamante M, Moreira J, Quintana Y, López J. Guia Ilustrada de pelos para la identificación de mamiferos mayores y medianos de Guatemala. 2 da edici. Dirección General de Investigación (DIGI), editor. Guatemala; 2010.
56. Colwell RK, Chang XM, Chang J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology. 2004;85: 2717–2727. doi: 10.1890/03-0557
57. Levins R. Evolution in changing enviroment: Some theoretical explorations. Prinston university press. Princeton, New Jersey; 1968.
58. Krebs CJ. Ecological Methodology. Second Edi. New York: Addison-Wesley Educational Publishers, Inc.; 1999. doi: 10.1037/023990
59. Novakowski GC, Hahn NS, Fugi R. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotrop Ichthyol. 2008;6: 567–576. doi: 10.1590/S1679-62252008000400004
60. Peer N, Perissinotto R, Miranda NAF, Raw JL. A stable isotopic study of the diet of Potamonautes sidneyi (Brachyura: Potamonautidae) in two coastal lakes of the iSimangaliso Wetland Park, South Africa. Water SA. 2015;41: 549–558. http://dx.doi.org/10.4314/wsa.v41i4.15
61. Petersen BJ, Fry B. Stable Isotopes in Ecosystem Studies. Annu Rev Ecol Syst. 1987;18: 293–320. doi: 10.1146/annurev.es.18.110187.001453
62. Fry B. Stable isotope ecology. 3rd editio. United States of America.: Springer Science+Business Media, LLC; 2008. doi: 10.1007/0-387-33745-8
63. Post DM. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology. 2002;83: 703–718. doi: 10.2307/3071875
64. Kelly JF. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool. 2000;78: 1–27. doi: 10.1139/z99-165
65. Blundell G, Ben-David M, Bowyer R. Sociality in river otters: Cooperative foraging or reproductive strategies? Behav Ecol. 2002;13: 134–141. doi: 10.1093/beheco/13.1.134
66. Angerbjorn A, Hersteinsson P, Liden K, Nelson E. Dietary variation in arctic foxes (Alopex lagopus): An analysis of stable carbon isotopes. Oecologia. 1994;99: 226–232. doi: 10.1007/BF00627734
67. Darimont CT, Reimchen TE. Intra-hair stable isotope analysis implies seasonal shift to salmon in gray wolf diet. Can J Zool. 2002;80: 1638–1642. doi: 10.1139/z02-149
68. Aurioles-Gamboa D, Newsome SD, Salazar-Pico S, Koch PL. Stable isotope differences between sea lions (Zalophus) from the Gulf of California and Galapagos Islands. J Mammal. 2009;90: 1410–1420. doi: 10.1644/08-mamm-a-209r2.1
69. Fortin JK, Schwartz CC, Gunther KA, Teisberg JE, Haroldson MA, Evans MA, et al. Dietary adjustability of grizzly bears and American black bears in Yellowstone National Park. J Wildl Manage. 2013;77: 270–281. doi: 10.1002/jwmg.483
70. Wengeler WR, Kelt D a., Johnson ML. Ecological consequences of invasive lake trout on river otters in Yellowstone National Park. Biol Conserv. 2010;143: 1144–1153. doi: 10.1016/j.biocon.2010.02.012
71. Schoeninger MJ, DeNiro MJ, Tauber H. Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science (80-). 1983;220: 1381–1383.
72. Newsome SD, Phillips DL, Culleton BJ, Guilderson TP, Koch PL. Dietary reconstruction of an early to middle Holocene human population from the central California coast: Insights from advanced stable isotope mixing models. J Archaeol Sci. 2004;31: 1101–1115. doi: 10.1016/j.jas.2004.02.001
73. Salvarina I, Yohannes E, Siemers BM, Koselj K. Advantages of using fecal samples for stable isotope analysis in bats: Evidence from a triple isotopic experiment. Rapid Commun Mass Spectrom. 2013;27: 1945–1953. doi: 10.1002/rcm.6649 23939961
74. Crowley S, Johnson CJ, Hodder DP. Spatio-temporal variation in river otter (Lontra canadensis) diet and latrine site activity. Écoscience. 2013;20: 28–39. doi: 10.2980/20-1-3509
75. Crait JR, Ben-David M. Effects of river otter activity on terrestrial plants in trophically altered Yellowstone Lake. Ecology. 2007;88: 1040–1052. doi: 10.1890/06-0078 17536719
76. Codron D, Codron J, Lee-Thorp JA, Sponheimer M, de Ruiter D. Animal diets in the Waterberg based on stable isotopic composition of faeces. South African J Wildl Res. 2005;35: 43–52.
77. Hatch KA, Roeder BL, Buckman RS, Gale BH, Bunnell ST, Eggett DL, et al. Isotopic and gross fecal analysis of American black bear scats. Ursus. 2011;22: 133–140. doi: 10.2192/URSUS-D-10-00034.1
78. Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H. Determining trophic niche width: A novel approach using stable isotope analysis. J Anim Ecol. 2004;73: 1007–1012. doi: 10.1111/j.0021-8790.2004.00861.x
79. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2018. Available: https://www.r-project.org/
80. Gastwirth JL, Gel YR, Wallace Hui WL, Lyubchich V, Miao W, Noguchi K, et al. lawstat: Tools for Biostatistics, Public Policy, and Law [Internet]. 2019. Available: https://cran.r-project.org/package=lawstat to
81. Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation. R package version 0.7.6. [Internet]. 2018. Available: https://cran.r-project.org/package=dplyr
82. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. 2016. Available: https://ggplot2.tidyverse.org
83. Moyle PB, Light T. Biological invasions of fresh water: Empirical rules and assembly theory. Biol Conserv. 1996;78: 149–161. doi: 10.1016/0006-3207(96)00024-9
84. Lopes CA, Manetta GI, Figueiredo BRS, Martinelli LA, Benedito E. Carbon from littoral producers is the major source of energy for bottom-feeding fish in a tropical floodplain. Environ Biol Fishes. 2015;98: 1081–1088. doi: 10.1007/s10641-014-0343-7
85. Peers MJL, Thornton DH, Murray DL. Reconsidering the specialist-generalist paradigm in niche breadth dynamics: Resource gradient selection by Canada lynx and bobcat. PLoS One. 2012;7: e51488. doi: 10.1371/journal.pone.0051488 23236508
86. Burress ED, Duarte A, Gangloff MM, Siefferman L. Isotopic trophic guild structure of a diverse subtropical South American fish community. Ecol Freshw Fish. 2013;22: 66–72. doi: 10.1111/eff.12002
87. Ward-Fear G, Brown GP, Shine R. Using a native predator (the meat ant, Iridomyrmex reburrus) to reduce the abundance of an invasive species (the cane toad, Bufo marinus) in tropical Australia. J Appl Ecol. 2010;47: 273–280. doi: 10.1111/j.1365-2664.2010.01773.x
88. Wanger TC, Wielgoss AC, Motzke I, Clough Y, Brook BW, Sodhi NS, et al. Endemic predators, invasive prey and native diversity. Proc R Soc B Biol Sci. 2011;278: 690–694. doi: 10.1098/rspb.2010.1512 20826488
89. Baltz DM, Moyle PB. Invasion resistance to introduced species by a native assemblage of California stream fishes. Ecol Appl. 1993;3: 246–255. doi: 10.2307/1941827 27759321
90. Skewes O, Moraga CA, Arriagada P, Rau JR. El jabalí europeo (Sus scrofa): Un invasor biológico como presa reciente del puma (Puma concolor) en el sur de Chile. Rev Chil Hist Nat. 2012;85: 227–232. doi: 10.4067/S0716-078X2012000200009
91. Cameron EK, Bayne EM. Invasion by a non-native ecosystem engineer alters distribution of a native predator. Divers Distrib. 2012;18: 1190–1198. doi: 10.1111/j.1472-4642.2012.00912.x
92. Roemer GW, Donlan CJ, Courchamp F. Golden eagles, feral pigs, and insular carnivores: How exotic species turn native predators into prey. Proc Natl Acad Sci U S A. 2002;99: 791–796. doi: 10.1073/pnas.012422499 11752396
93. Barrientos C, Quintana Y, Elías DJ, Rodiles-Hernández R. Peces nativos y pesca artesanal en la cuenca Usumacinta, Guatemala. Mex Rev Mex Biodivers. 2018;89: S118–S130. doi: 10.22201/ib.20078706e.2018.4.2180
94. Yirga G, Leirs H, De Iongh HH, Asmelash T, Gebrehiwot K, Deckers J, et al. Spotted hyena (Crocuta crocuta) concentrate around urban waste dumps across Tigray, northern Ethiopia. Wildl Res. 2015;42: 563–569. doi: 10.1071/WR14228
95. Bateman PW, Fleming PA. Big city life: Carnivores in urban environments. J Zool. 2012;287: 1–23. doi: 10.1111/j.1469-7998.2011.00887.x
96. Hussey NE, Macneil MA, Mcmeans BC, Olin JA, Dudley SFJ, Cliff G, et al. Rescaling the trophic structure of marine food webs. Ecol Lett. 2014;17: 239–250. doi: 10.1111/ele.12226 24308860
97. Rodriguez LF. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions. 2006;8: 927–939. doi: 10.1007/s10530-005-5103-3
98. Grosholz ED, Ruiz GM, Dean C a, Shirley K a, John L, Connors PG, et al. The impacts of a nonindigenous marine predator in a California Bay. Ecology. 2000;81: 1206–1224.
99. Noonburg EG, Byers JE. More harm than good: When invader vulnerabilty to predators enhances impact on native species. Ecology. 2005;86: 2555–2560. doi: 10.1890/05-0143
100. Britton JR, Davies GD, Harrod C. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: A field investigation in the UK. Biol Invasions. 2010;12: 1533–1542. doi: 10.1007/s10530-009-9566-5
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis