Single session high definition transcranial direct current stimulation to the cerebellum does not impact higher cognitive function
Autoři:
Ted Maldonado aff001; James R. M. Goen aff001; Michael J. Imburgio aff001; Sydney M. Eakin aff001; Jessica A. Bernard aff001
Působiště autorů:
Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
aff001; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222995
Souhrn
The prefrontal cortex is central to higher order cognitive function. However, the cerebellum, generally thought to be involved in motor control and learning, has also been implicated in higher order cognition. Recent work using transcranial direct current stimulation (tDCS) provides some support for right cerebellar involvement in higher order cognition, though the results are mixed, and often contradictory. Here, we used cathodal high definition tDCS (HD-tDCS) over the right cerebellum to assess the impact of HD-tDCS on modulating cognitive performance. We predicted that stimulation would result in performance decreases, which would suggest that optimal cerebellar function is necessary for cognitive performance, much like the prefrontal cortex. That is, it is not simply a structure that lends support to complete difficult tasks. While the expected cognitive behavioral effects were present, we did not find effects of stimulation. This has broad implications for cerebellar tDCS research, particularly for those who are interested in using HD-tDCS as a way of examining cerebellar function. Further implications, limitations, and future directions are discussed with particular emphasis on why null findings might be critical in developing a clear picture of the effects of tDCS on the cerebellum.
Klíčová slova:
Behavior – Prefrontal cortex – Cognition – Functional electrical stimulation – Working memory – Reaction time – Transcranial direct-current stimulation – Cerebellum
Zdroje
1. Buckner RL. The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging. Neuron [Internet]. 2013 Oct 30 [cited 2018 Dec 13];80(3):807–15. Available from: https://www.sciencedirect.com/science/article/pii/S0896627313009963 doi: 10.1016/j.neuron.2013.10.044 24183029
2. Oldrati V, Schutter DJLG. Targeting the Human Cerebellum with Transcranial Direct Current Stimulation to Modulate Behavior: a Meta-Analysis. The Cerebellum [Internet]. 2018;17(2):228–36. Available from: http://link.springer.com/10.1007/s12311-017-0877-2 doi: 10.1007/s12311-017-0877-2 28786014
3. Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions. Neuroimage [Internet]. 2014;85:918–23. Available from: https://doi.org/10.1016/j.neuroimage.2013.04.122 23664951
4. Holmes G. The Cerebellum of Man. Brain [Internet]. 1939 Mar 1 [cited 2018 Nov 9];62(1):1–30. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/62.1.1
5. Bernard JA, Seidler RD. Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum. 2013;12(5):721–37. doi: 10.1007/s12311-013-0481-z 23625382
6. Schmahmann JD. The cerebellum and cognition. Neurosci Lett [Internet]. 2018 Jan 1 [cited 2018 Nov 19];62–75. Available from: https://www.sciencedirect.com/science/article/pii/S0304394018304671
7. Stoodley CJ. The cerebellum and cognition: Evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65. doi: 10.1007/s12311-011-0260-7 21373864
8. Rapoport M, van Reekum R, Mayberg H. The Role of the Cerebellum in Cognition and Behavior. J Neuropsychiatry Clin Neurosci [Internet]. 2000 May 1 [cited 2018 Nov 19];12(2):193–8. Available from: http://psychiatryonline.org/doi/abs/10.1176/jnp.12.2.193 11001597
9. Schmahmann J, Sherman JC. The cerebellar cognitive affective syndrome. Brain [Internet]. 1998 Apr 1 [cited 2018 Dec 11];121(4):561–79. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/121.4.561
10. Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci [Internet]. 1997 Dec 15 [cited 2018 Nov 19];17(24):9675–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9391022 9391022
11. E K-H, Chen S-HA, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp [Internet]. 2014 Feb [cited 2018 Dec 11];35(2):593–615. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23125108 doi: 10.1002/hbm.22194 23125108
12. Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behav Neurosci [Internet]. 1989 [cited 2018 Dec 11];103(5):998–1008. Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.103.5.998 2679667
13. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res [Internet]. 1991 Aug 29 [cited 2018 Dec 11];44(2):113–28. Available from: https://www.sciencedirect.com/science/article/pii/S0166432805800166 doi: 10.1016/s0166-4328(05)80016-6 1751002
14. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. CORTEX [Internet]. 2010 [cited 2018 Nov 9];46(7):831–44. Available from: https://ac.els-cdn.com/S0010945209003268/1-s2.0-S0010945209003268-main.pdf?_tid=53780b5e-846e-4935-8aba-425eb0d2439d&acdnat=1541789292_9686cdf42edfaaec1d42dd592bf4a7df doi: 10.1016/j.cortex.2009.11.008 20152963
15. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. Neuroimage [Internet]. 2012 [cited 2018 Nov 9];59(2):1560–70. Available from: http://www.nitrc.org/ doi: 10.1016/j.neuroimage.2011.08.065 21907811
16. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Thomas Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol [Internet]. 2011 [cited 2018 Nov 9];106(5):2322–45. Available from: www.jn.org doi: 10.1152/jn.00339.2011 21795627
17. Hayter AL, Langdon DW, Ramnani N. Cerebellar contributions to working memory. Neuroimage [Internet]. 2007 Jul 1 [cited 2018 Nov 19];36(3):943–54. Available from: https://www.sciencedirect.com/science/article/pii/S1053811907001802 doi: 10.1016/j.neuroimage.2007.03.011 17468013
18. Hautzel H, Mottaghy FM, Specht K, Müller H-W, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage [Internet]. 2009 Oct 1 [cited 2018 Nov 19];47(4):2073–82. Available from: https://www.sciencedirect.com/science/article/pii/S1053811909006259 doi: 10.1016/j.neuroimage.2009.06.005 19524048
19. Bellebaum C, Daum I. Cerebellar involvement in executive control. The Cerebellum [Internet]. 2007 [cited 2018 Nov 19];6(3):184–92. Available from: http://link.springer.com/10.1080/14734220601169707 doi: 10.1080/14734220601169707 17786814
20. Jahanshahi M, Dirnberger G, Fuller R, Frith CD. The Role of the Dorsolateral Prefrontal Cortex in Random Number Generation: A Study with Positron Emission Tomography. Neuroimage [Internet]. 2000 Dec 1 [cited 2018 Nov 19];12(6):713–25. Available from: https://www.sciencedirect.com/science/article/pii/S1053811900906475 doi: 10.1006/nimg.2000.0647 11112403
21. Lie C-H, Specht K, Marshall JC, Fink GR. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage [Internet]. 2006 Apr 15 [cited 2018 Nov 19];30(3):1038–49. Available from: https://www.sciencedirect.com/science/article/pii/S1053811905007883 doi: 10.1016/j.neuroimage.2005.10.031 16414280
22. Schall U, Johnston P, Lagopoulos J, Jüptner M, Jentzen W, Thienel R, et al. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. Neuroimage [Internet]. 2003 Oct 1 [cited 2018 Nov 19];20(2):1154–61. Available from: https://www.sciencedirect.com/science/article/pii/S1053811903003380 doi: 10.1016/S1053-8119(03)00338-0 14568484
23. Stoodley C, Schmahmann J. Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage [Internet]. 2009 Jan 15 [cited 2019 Sep 5];44(2):489–501. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18835452 doi: 10.1016/j.neuroimage.2008.08.039 18835452
24. Neau J-P, Anllo EA, Bonnaud V, Ingrand P, Gil R. Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand [Internet]. 2000 Dec 1 [cited 2019 Jun 17];102(6):363–70. Available from: http://doi.wiley.com/10.1034/j.1600-0404.2000.102006363.x 11125751
25. Ravizza SM, Ivry RB. Comparison of the Basal Ganglia and Cerebellum in Shifting Attention [Internet]. [cited 2019 Jun 17]. Available from: https://www.mitpressjournals.org/doi/pdfplus/10.1162/08989290151137340
26. Koppelmans V, Hoogendam YY, Hirsiger S, Mérillat S, Jäncke L, Seidler RD. Regional cerebellar volumetric correlates of manual motor and cognitive function. Brain Struct Funct [Internet]. 2017 May 3 [cited 2019 Jan 15];222(4):1929–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27699480 doi: 10.1007/s00429-016-1317-7 27699480
27. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci [Internet]. 2006;7(7):511–22. Available from: http://www.nature.com/doifinder/10.1038/nrn1953 16791141
28. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol [Internet]. 2003 [cited 2018 Nov 9];89(1):634–9. Available from: www.jn.org doi: 10.1152/jn.00626.2002 12522208
29. Kelly RM, Strick PL. Rabies as a transneuronal tracer of circuits in the central nervous system [Internet]. Vol. 103, Journal of Neuroscience Methods. 2000 [cited 2018 Nov 9]. Available from: www.elsevier.com/locate/jneumeth
30. Sen S, Kawaguchi A, Truong Y, Lewis MM, Huang X. Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson’s disease. Neuroscience [Internet]. 2010 Mar 17 [cited 2018 Dec 13];166(2):712–9. Available from: https://www.sciencedirect.com/science/article/pii/S0306452209020715 doi: 10.1016/j.neuroscience.2009.12.036 20034546
31. Palesi F, Tournier J-D, Calamante F, Muhlert N, Castellazzi G, Chard D, et al. Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct Funct [Internet]. 2015 Nov 19 [cited 2018 Dec 13];220(6):3369–84. Available from: http://link.springer.com/10.1007/s00429-014-0861-2 doi: 10.1007/s00429-014-0861-2 25134682
32. Bernard JA, Orr JM, Mittal VA. Differential motor and prefrontal cerebello-cortical network development: Evidence from multimodal neuroimaging. Neuroimage [Internet]. 2016 Jan 1 [cited 2018 Dec 13];124(Pt A):591–601. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26391125 doi: 10.1016/j.neuroimage.2015.09.022 26391125
33. Reineberg AE, Andrews-Hanna JR, Depue BE, Friedman NP, Banich MT. Resting-state networks predict individual differences in common and specific aspects of executive function. Neuroimage [Internet]. 2015 Jan 1 [cited 2018 Nov 9];104(1):69–78. Available from: https://www.sciencedirect.com/science/article/pii/S1053811914007873
34. Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, et al. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience [Internet]. 2009 Sep 1 [cited 2018 Dec 14];162(3):836–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19409233 doi: 10.1016/j.neuroscience.2009.01.040 19409233
35. Timmann D, Brandauer B, Hermsdörfer J, Ilg W, Konczak J, Gerwig M, et al. Lesion-Symptom Mapping of the Human Cerebellum. The Cerebellum [Internet]. 2008 Dec 23 [cited 2018 Dec 14];7(4):602–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18949530 doi: 10.1007/s12311-008-0066-4 18949530
36. Ilg W, Christensen A, Mueller OM, Goericke SL, Giese MA, Timmann D. Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. J Neurophysiol [Internet]. 2013 Nov 15 [cited 2018 Dec 14];110(10):2337–49. Available from: http://www.physiology.org/doi/10.1152/jn.00062.2013 23966680
37. Richter S, Gerwig M, Aslan B, Wilhelm H, Schoch B, Dimitrova A, et al. Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. J Neurol. 2007;
38. Desmond JE, Chen SHA, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol [Internet]. 2005 Oct [cited 2018 Dec 15];58(4):553–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16178033 doi: 10.1002/ana.20604 16178033
39. Rami L, Gironell A, Kulisevsky J, García-Sánchez C, Berthier M, Estévez-González A. Effects of repetitive transcranial magnetic stimulation on memory subtypes: a controlled study. Neuropsychologia [Internet]. 2003 Jan 1 [cited 2018 Dec 15];41(14):1877–83. Available from: https://www.sciencedirect.com/science/article/pii/S0028393203001313 doi: 10.1016/s0028-3932(03)00131-3 14572521
40. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008;1(3):206–23. doi: 10.1016/j.brs.2008.06.004 20633386
41. Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol [Internet]. 2011 [cited 2018 Nov 9];24(6):590–6. Available from: https://insights.ovid.com/crossref?an=00019052-201112000-00013 doi: 10.1097/WCO.0b013e32834c3db0 21968548
42. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage [Internet]. 2014 Jan 15 [cited 2018 Nov 9];85:895–908. Available from: https://www.sciencedirect.com/science/article/pii/S1053811913008550 doi: 10.1016/j.neuroimage.2013.07.083 23933040
43. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul [Internet]. 2012;5(2):84–94. Available from: https://doi.org/10.1016/j.brs.2012.03.006 22494832
44. Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul [Internet]. 2013;6(4):649–53. Available from: https://doi.org/10.1016/j.brs.2012.10.001 23122917
45. Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar Transcranial Direct Current Stimulation Impairs the Practice-dependent Proficiency Increase in Working Memory. J Cogn Neurosci [Internet]. 2008;20(9):1687–97. Available from: http://www.mitpressjournals.org/doi/10.1162/jocn.2008.20112 18345990
46. Spielmann K, van der Vliet R, van de Sandt-Koenderman WME, Frens MA, Ribbers GM, Selles RW, et al. Cerebellar Cathodal Transcranial Direct Stimulation and Performance on a Verb Generation Task: A Replication Study. Neural Plast [Internet]. 2017 Feb 14 [cited 2018 Nov 19];2017:1–12. Available from: https://www.hindawi.com/journals/np/2017/1254615/
47. van Wessel BW V., Verhage MC, Holland P, Frens MA, van der Geest JN. Cerebellar tDCS does not affect performance in the N-back task. J Clin Exp Neuropsychol [Internet]. 2016 Mar 15 [cited 2018 Nov 20];38(3):319–26. Available from: http://www.tandfonline.com/doi/full/10.1080/13803395.2015.1109610 26646653
48. Majidi SN, Verhage MC, Donchin O, Holland P, Frens MA, van der Geest JN. Cerebellar tDCS does not improve performance in probabilistic classification learning. Exp Brain Res [Internet]. 2017 Feb 20 [cited 2018 Nov 20];235(2):421–8. Available from: http://link.springer.com/10.1007/s00221-016-4800-8 doi: 10.1007/s00221-016-4800-8 27766351
49. Verhage MC, Avila EO, Frens MA, Donchin O, van der Geest JN. Cerebellar tDCS Does Not Enhance Performance in an Implicit Categorization Learning Task. Front Psychol [Internet]. 2017 [cited 2019 Jan 16];8:476. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28424645 doi: 10.3389/fpsyg.2017.00476 28424645
50. Steiner KM, Enders A, Thier W, Batsikadze G, Ludolph N, Ilg W, et al. Cerebellar tDCS Does Not Improve Learning in a Complex Whole Body Dynamic Balance Task in Young Healthy Subjects. Tremblay F, editor. PLoS One [Internet]. 2016 Sep 26 [cited 2018 Nov 20];11(9):e0163598. Available from: http://dx.plos.org/10.1371/journal.pone.0163598 doi: 10.1371/journal.pone.0163598 27669151
51. Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: How to Do It. Cerebellum. 2015;14(1):27–30. doi: 10.1007/s12311-014-0599-7 25231432
52. Datta A, Sen S, Zick Y. Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems. In: 2016 IEEE Symposium on Security and Privacy (SP) [Internet]. IEEE; 2016 [cited 2018 Dec 11]. p. 598–617. Available from: http://ieeexplore.ieee.org/document/7546525/
53. Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. Elife [Internet]. 2017 Feb 7 [cited 2018 Dec 11];6. Available from: https://elifesciences.org/articles/18834
54. Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, et al. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat [Internet]. 2012;6(August):1–19. Available from: http://journal.frontiersin.org/article/10.3389/fnana.2012.00031/abstract
55. Krienen FM, Buckner RL. Segregated Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity. Cereb Cortex [Internet]. 2009 Jul 10 [cited 2019 Jan 15];19(10):2485–97. Available from: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhp135 19592571
56. Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. Neuroimage [Internet]. 2013 Jul 1 [cited 2018 Nov 20];74:266–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23370061 doi: 10.1016/j.neuroimage.2013.01.042 23370061
57. Dmochowski JP, Datta A, Huang Y, Richardson JD, Bikson M, Fridriksson J, et al. Targeted transcranial direct current stimulation for rehabilitation after stroke. Neuroimage [Internet]. 2013 Jul 15 [cited 2018 Nov 20];75:12–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23473936 doi: 10.1016/j.neuroimage.2013.02.049 23473936
58. Nikolin S, Loo CK, Bai S, Dokos S, Martin DM. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. Neuroimage [Internet]. 2015 Aug 15 [cited 2018 Nov 20];117:11–9. Available from: https://www.sciencedirect.com/science/article/pii/S1053811915003997 doi: 10.1016/j.neuroimage.2015.05.019 25987365
59. Pascual-Leone A, Walsh V, Rothwell J. Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol [Internet]. 2000 Apr 1 [cited 2019 Jun 27];10(2):232–7. Available from: https://www.sciencedirect.com/science/article/pii/S0959438800000817 doi: 10.1016/s0959-4388(00)00081-7 10753803
60. Spielmann K, van der Vliet R, van de Sandt-Koenderman WME, Frens MA, Ribbers GM, Selles RW, et al. Cerebellar Cathodal Transcranial Direct Stimulation and Performance on a Verb Generation Task: A Replication Study. Neural Plast [Internet]. 2017 Feb 14 [cited 2019 Jun 12];2017:1–12. Available from: https://www.hindawi.com/journals/np/2017/1254615/
61. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology [Internet]. 2001 Nov 27 [cited 2019 Jun 28];57(10):1899–901. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11723286 doi: 10.1212/wnl.57.10.1899 11723286
62. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4 5146491
63. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol [Internet]. 1935 [cited 2018 Nov 8];18(6):643–62. Available from: http://content.apa.org/journals/xge/18/6/643
64. Sternberg S. High-speed scanning in human memory. Science (80-) [Internet]. 1966 Aug 5 [cited 2018 Dec 15];153(3736):652–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5939936
65. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul [Internet]. 2009 Oct [cited 2019 Sep 2];2(4):201–7, 207.e1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20648973 doi: 10.1016/j.brs.2009.03.005 20648973
66. Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng [Internet]. 2011 Aug 1 [cited 2019 Sep 2];8(4):046011. Available from: http://stacks.iop.org/1741-2552/8/i=4/a=046011?key=crossref.8bc740c9733c7478cf7a2e0451239f29 doi: 10.1088/1741-2560/8/4/046011 21659696
67. Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-Individual Variation during Transcranial Direct Current Stimulation and Normalization of Dose Using MRI-Derived Computational Models. Front Psychiatry [Internet]. 2012 Oct 22 [cited 2019 Sep 2];3:91. Available from: http://journal.frontiersin.org/article/10.3389/fpsyt.2012.00091/abstract doi: 10.3389/fpsyt.2012.00091 23097644
68. Villamar MF, Volz MS, Bikson M, Datta A, DaSilva AF, Fregni F. Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS). J Vis Exp [Internet]. 2013 Jul 14 [cited 2019 Sep 2];(77):e50309. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23893039 doi: 10.3791/50309 23893039
69. Sochat V. The Experiment Factory: Reproducible Experiment Containers Software • Review • Repository • Archive. 2018 [cited 2018 Nov 8]; Available from: https://doi.org/10.21105/joss.00521
70. Team RC. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
71. Lawrence MA. Easy Analysis and Visualization of Factorial Experiments [Internet]. 2013 [cited 2018 Nov 15]. Available from: https://cran.r-project.org/web/packages/ez/ez.pdf
72. Noguchi K, Gel YR, Brunner E, Konietschke F. nparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments. J Stat Softw [Internet]. 2012 Sep 18 [cited 2019 Jun 26];50(12):1–23. Available from: http://www.jstatsoft.org/v50/i12/
73. Feys J. Nonparametric Tests for the Interaction in Two-way Factorial Designs Using R. R J. 2019;8(1):367.
74. Bakeman R. Recommended effect size statistics for repeated measures designs. Behav Res Methods [Internet]. 2005 Aug [cited 2018 Dec 15];37(3):379–84. Available from: http://www.springerlink.com/index/10.3758/BF03192707 16405133
75. Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc [Internet]. 1995 Jun [cited 2018 Dec 17];90(430):773–95. Available from: http://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476572
76. JASPTeam. JASP (Version 0.9)[Computer software] [Internet]. 2018. Available from: https://jasp-stats.org/
77. Ratcliff R. A theory of memory retrieval. Psychol Rev [Internet]. 1978 [cited 2019 Jun 26];85(2):59–108. Available from: http://content.apa.org/journals/rev/85/2/59
78. Voss A, Voss J. Fast-dm: A free program for efficient diffusion model analysis. Vol. 39, Behavior Research Methods. 2007.
79. Gupta T, Dean DJ, Kelley NJ, Bernard JA, Ristanovic I, Mittal VA. Cerebellar Transcranial Direct Current Stimulation Improves Procedural Learning in Nonclinical Psychosis: A Double-Blind Crossover Study. Schizophr Bull [Internet]. 2018 Oct 17 [cited 2018 Dec 15];44(6):1373–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29301026 doi: 10.1093/schbul/sbx179 29301026
80. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease. Neuroscientist [Internet]. 2016 Feb [cited 2018 Dec 15];22(1):83–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25406224 doi: 10.1177/1073858414559409 25406224
81. Stagg CJ, Jayaram G, Pastor D, Kincses ZT, Matthews PM, Johansen-Berg H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia [Internet]. 2011 Apr 1 [cited 2018 Dec 15];49(5):800–4. Available from: https://www.sciencedirect.com/science/article/pii/S0028393211000716 doi: 10.1016/j.neuropsychologia.2011.02.009 21335013
82. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neurosci [Internet]. 2011 [cited 2018 Dec 15];17(1):37–53. Available from: http://journals.sagepub.com/doi/10.1177/1073858410386614
83. Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage [Internet]. 2015 Apr 1 [cited 2018 Nov 20];109:140–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25613437 doi: 10.1016/j.neuroimage.2015.01.033 25613437
84. Truong DQ, Magerowski G, Blackburn GL, Bikson M, Alonso-Alonso M. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. NeuroImage Clin [Internet]. 2013 [cited 2018 Nov 20];2:759–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24159560 doi: 10.1016/j.nicl.2013.05.011 24159560
85. Pelletier SJ, Cicchetti F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: Evidence from in vitro and in vivo models. Int J Neuropsychopharmacol. 2015;18(2):1–13.
86. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul [Internet]. 2012 Jul [cited 2019 Jun 13];5(3):175–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1935861X1100026X doi: 10.1016/j.brs.2011.03.002 22037126
87. Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul [Internet]. 2017 Mar 1 [cited 2019 Jun 13];10(2):242–50. Available from: https://www.sciencedirect.com/science/article/pii/S1935861X16302996#bib13 doi: 10.1016/j.brs.2016.11.001 27838276
88. Meinzer M, Jähnigen S, Copland DA, Darkow R, Grittner U, Avirame K, et al. Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex [Internet]. 2014 Jan 1 [cited 2019 Jun 13];50:137–47. Available from: https://www.sciencedirect.com/science/article/pii/S0010945213001858 doi: 10.1016/j.cortex.2013.07.013 23988131
89. Rosenthal R. The file drawer problem and tolerance for null results. Psychol Bull [Internet]. 1979 [cited 2018 Nov 20];86(3):638–41. Available from: http://content.apa.org/journals/bul/86/3/638
90. Ferrucci R, Bocci T, Cortese F, Ruggiero F, Priori A. Cerebellar transcranial direct current stimulation in neurological disease. Cerebellum & Ataxias [Internet]. 2016;3(1):16. Available from: http://cerebellumandataxias.biomedcentral.com/articles/10.1186/s40673-016-0054-2
91. Pope P, Miall RC. Restoring Cognitive Functions Using Non-Invasive Brain Stimulation Techniques in Patients with Cerebellar Disorders. Front Psychiatry. 2014;5:33. doi: 10.3389/fpsyt.2014.00033 24765079
92. Sánchez-Kuhn A, Pérez-Fernández C, Cánovas R, Flores P, Sánchez-Santed F. Transcranial direct current stimulation as a motor neurorehabilitation tool: An empirical review. Biomed Eng Online. 2017;16(s1):115–36.
93. Tang MF, Hammond GR, Badcock DR. Are Participants Aware of the Type and Intensity of Transcranial Direct Current Stimulation? Balasubramaniam R, editor. PLoS One [Internet]. 2016 Feb 10 [cited 2019 Jun 13];11(2):e0148825. Available from: https://dx.plos.org/10.1371/journal.pone.0148825 doi: 10.1371/journal.pone.0148825 26863314
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis