#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Pollock avoided hydrodynamic instabilities to paint with his dripping technique


Autoři: Bernardo Palacios aff001;  Alfonso Rosario aff001;  Monica M. Wilhelmus aff002;  Sandra Zetina aff003;  Roberto Zenit aff001
Působiště autorů: Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México aff001;  Department of Mechanical Engineering, University of California Riverside, Riverside, CA, United States of America aff002;  Instituto de Investigaciones Estéticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México aff003;  School of Engineering, Brown University, Providence, RI, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223706

Souhrn

Jackson Pollock’s most celebrated abstract paintings were produced with the so-called dripping technique. By pouring liquid paint with the help of a stick or from a can, Pollock deposited viscous fluid filaments on a horizontal canvas, rhythmically moving around it. The intricate webs of lines, ubiquitous in his compositions, have fascinated art historians and scientists. Based on image analysis of historical video recordings, we experimentally reproduced the painting process. We conclude that Pollock avoided the appearance of the hydrodynamic instabilities, contrary to what was argued by previous studies. Pollock selected the physical properties of the paint to prevent filament fragmentation before deposition, and applied it while moving his hand sufficiently fast and at certain heights to avoid fluid filaments from coiling into themselves. An understanding of the physical conditions at which these patterns were created is important to further art research and it can be used as a tool in the authentication of paintings.

Klíčová slova:

Inertia – Viscosity – Surface tension – Relaxation time – Flow rate – Paints – Fluids – Physical properties


Zdroje

1. Landau EG. Jackson Pollock. New York: Abrams; 1989.

2. Solomon D. Jackson Pollock: A biography. Cooper Square Press; 2001.

3. Harrison HA. Jackson Pollock. New York: Phaidon Press Inc.; 2014.

4. Pollock J. My Painting. Possibilities. 1947;1:73–83.

5. Hurlburt LP. El taller experimental Siqueiros: New York 1936. Rev Bellas Art. 1976;25:26–37.

6. Zetina S, Godinez F, Zenit R. A Hydrodynamic Instability Is Used to Create Aesthetically Appealing Patterns in Painting. PLoS ONE. 2015;10(5):e0126135. doi: 10.1371/journal.pone.0126135 25942586

7. Clanet C, Lasheras JC. Transition from dripping to jetting. J Fluid Mech. 1999;383:307–326. doi: 10.1017/S0022112098004066

8. Eggers J, Villermaux E. Physics of liquid jets. Rep Prog Phys. 2008;71:036601. doi: 10.1088/0034-4885/71/3/036601

9. Pollock J. Number 14: Gray; 1948. Available from: https://artgallery.yale.edu/collections/objects/33977 [cited 2019-09-18].

10. Herczynski A, Cernuschi C, Mahadevan L. Painting with drops, jets and sheets. Phys Today. 2011;64(6):31–36. doi: 10.1063/1.3603916

11. Ribe NM, Habibi M, Bonn D. Liquid rope coiling. Annu Rev Fluid Mech. 2012;44:249–266. doi: 10.1146/annurev-fluid-120710-101244

12. Morris SW, Dawes JHP, Ribe NM, Lister JR. Meandering instability of a viscous thread. Phys Rev E. 2008;77:066218. doi: 10.1103/PhysRevE.77.066218

13. Welch RL, Szeto B, Morris SW. Frequency structure of the nonlinear instability of a dragged viscous thread. Phys Rev E. 2012;85:066209. doi: 10.1103/PhysRevE.85.066209

14. Brun PT, Ribe NM, Audoly B. A numerical investigation of the fluid mechanical sewing machine. Phys Fluids. 2012;24:043102. doi: 10.1063/1.3703316

15. Brun PT, Audoly B, Ribe NM, Eaves TS, Lister JR. Liquid Ropes: A Geometrical Model for Thin Viscous Jet Instabilities. Phys Rev Lett. 2015;114:174501. doi: 10.1103/PhysRevLett.114.174501 25978238

16. Ribe NM. Liquid rope coiling: a synaptic view. J Fluid Mech. 2016;812:R2. doi: 10.1017/jfm.2016.836

17. Driessen T, Jeurissen R, Wijshoff H, Toschi F, Lohse D. Stability of viscous long filaments. Phys Fluids. 2013;25:062109. doi: 10.1063/1.4811849

18. Osterhold M. Rheological methods for characterising modern paint systems. Progress in Organic Coatings. 2000;40(1):131—137. https://doi.org/10.1016/S0300-9440(00)00124-7.

19. Chiu-Webster S, Lister JR. The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine’. J Fluid Mech. 2006;529:89–111. doi: 10.1017/S0022112006002503

20. Ribe NM, Lister JR, Chiu-Webster S. Stability of a dragged viscous thread: Onset of ‘stitching’ in a fluid-mechanical ‘sewing machine’. Phys Fluids. 2006;18:124105. https://doi.org/10.1063/1.2409617.

21. Namuth H. Jackson Pollock 51; 1950. This short film captures the artist working. Available from: http://www.openculture.com/2011/08/jackson_pollock_lights_camera_paint.html [cited December 2015].

22. Osterhold M, Armbruster K. Correlation between surface tension and physical paint properties. Prog Org Coat. 1998;33:187–201. doi: 10.1016/S0300-9440(98)00053-8

23. Godinez FA, Koens L, Montenegro-Johnson TD, Zenit R, Lauga E. Complex fluids affect low-Reynolds number locomotion in a kinematic dependent manner. Exp Fluids. 2015;56:97. doi: 10.1007/s00348-015-1961-3

24. Landau L, Levich B. Dragging of a liquid by a moving plate. Acta Physicochim USSR. 1942;7:42–54.

25. Mahadevan L, Ryu WS, Samuel ADT. Fluid rope trick investigated. Nature. 1998;392:140. doi: 10.1038/32321


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#