Disruption of white matter connectivity in chronic obstructive pulmonary disease
Autoři:
Catherine A. Spilling aff001; Paul W. Jones aff002; James W. Dodd aff003; Thomas R. Barrick aff001
Působiště autorů:
Neuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, Tooting, London, United Kingdom
aff001; Institute of Infection and Immunity, St George's, University of London, Tooting, London, United Kingdom
aff002; Academic Respiratory Unit, Second Floor, Learning and Research, Southmead Hospital, University of Bristol, Westbury-on-Trym, Bristol, United Kingdom
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223297
Souhrn
Background
Mild cognitive impairment is a common systemic manifestation of chronic obstructive pulmonary disease (COPD). However, its pathophysiological origins are not understood. Since, cognitive function relies on efficient communication between distributed cortical and subcortical regions, we investigated whether people with COPD have disruption in white matter connectivity.
Methods
Structural networks were constructed for 30 COPD patients (aged 54–84 years, 57% male, FEV1 52.5% pred.) and 23 controls (aged 51–81 years, 48% Male). Networks comprised 90 grey matter regions (nodes) interconnected by white mater fibre tracts traced using deterministic tractography (edges). Edges were weighted by the number of streamlines adjusted for a) streamline length and b) end-node volume. White matter connectivity was quantified using global and nodal graph metrics which characterised the networks connection density, connection strength, segregation, integration, nodal influence and small-worldness. Between-group differences in white matter connectivity and within-group associations with cognitive function and disease severity were tested.
Results
COPD patients’ brain networks had significantly lower global connection strength (p = 0.03) and connection density (p = 0.04). There was a trend towards COPD patients having a reduction in nodal connection density and connection strength across the majority of network nodes but this only reached significance for connection density in the right superior temporal gyrus (p = 0.02) and did not survive correction for end-node volume. There were no other significant global or nodal network differences or within-group associations with disease severity or cognitive function.
Conclusion
COPD brain networks show evidence of damage compared to controls with a reduced number and strength of connections. This loss of connectivity was not sufficient to disrupt the overall efficiency of network organisation, suggesting that it has redundant capacity that makes it resilient to damage, which may explain why cognitive dysfunction is not severe. This might also explain why no direct relationships could be found with cognitive measures. Smoking and hypertension are known to have deleterious effects on the brain. These confounding effects could not be excluded.
Klíčová slova:
Network analysis – Cognitive impairment – Cognition – Diffusion tensor imaging – Tractography – Central nervous system – Chronic obstructive pulmonary disease – Neural networks
Zdroje
1. Kodl CT, Seaquist ER. Cognitive Dysfunction and Diabetes Mellitus. Endocr Rev. 2008;29: 494–511. doi: 10.1210/er.2007-0034 18436709
2. Berger I, Wu S, Masson P, Kelly PJ, Duthie FA, Whiteley W, et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 2016;14. doi: 10.1186/s12916-016-0745-9 27964726
3. Meade T, Manolios N, Cumming SR, Conaghan PG, Katz P. Cognitive Impairment in Rheumatoid Arthritis: A Systematic Review. Arthritis Care Res. 2018;70: 39–52. doi: 10.1002/acr.23243 28371512
4. Agusti A, Calverley PM, Celli B, Coxson HO, Edwards LD, Lomas DA, et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res. 2010;11: 122. doi: 10.1186/1465-9921-11-122 20831787
5. Dodd JW. Lung disease as a determinant of cognitive decline and dementia. Alzheimers Res Ther. 2015;7: 32. doi: 10.1186/s13195-015-0116-3 25798202
6. Chang SS, Chen S, McAvay GJ, Tinetti ME. Effect of Coexisting Chronic Obstructive Pulmonary Disease and Cognitive Impairment on Health Outcomes in Older Adults. J Am Geriatr Soc. 2012;60: 1839–1846. doi: 10.1111/j.1532-5415.2012.04171.x 23035917
7. Antonelli Incalzi R. Verbal memory impairment in COPD: its mechanisms and clinical relevance. CHEST J. 1997;112: 1506. doi: 10.1378/chest.112.6.1506 9404746
8. van Dijk EJ. Arterial oxygen saturation, COPD, and cerebral small vessel disease. J Neurol Neurosurg Psychiatry. 2004;75: 733–736. doi: 10.1136/jnnp.2003.022012 15090569
9. Lahousse L, Vernooij MW, Darweesh SKL, Akoudad S, Loth DW, Joos GF, et al. Chronic obstructive pulmonary disease and cerebral microbleeds. The Rotterdam study. Am J Respir Crit Care Med. 2013;188: 783–788. doi: 10.1164/rccm.201303-0455OC 23885754
10. Dodd JW, Chung AW, van den Broek MD, Barrick TR, Charlton RA, Jones PW. Brain Structure and Function in Chronic Obstructive Pulmonary Disease: A Multimodal Cranial Magnetic Resonance Imaging Study. Am J Respir Crit Care Med. 2012;186: 240–245. doi: 10.1164/rccm.201202-0355OC 22652026
11. Spilling CA, Jones PW, Dodd JW, Barrick TR. White matter lesions characterise brain involvement in moderate to severe chronic obstructive pulmonary disease, but cerebral atrophy does not. BMC Pulm Med. 2017;17. doi: 10.1186/s12890-017-0435-1 28629404
12. Ryu CW, Jahng GH, Choi CW, Rhee HY, Kim M-J, Kim SM, et al. Microstructural change of the brain in chronic obstructive pulmonary disease. 2013;10: 357–366.
13. Zhang H, Wang X, Lin J, Sun Y, Huang Y, Yang T, et al. Grey and white matter abnormalities in chronic obstructive pulmonary disease: a case-control study. BMJ Open. 2012;2: e000844–e000844. doi: 10.1136/bmjopen-2012-000844 22535793
14. Zeestraten EA, Lawrence AJ, Lambert C, Benjamin P, Brookes RL, Mackinnon AD, et al. Change in multimodal MRI markers predicts dementia risk in cerebral small vessel disease. Neurology. 2017;89: 1869–1876. doi: 10.1212/WNL.0000000000004594 28978655
15. Nave RD, Foresti S, Pratesi A, Ginestroni A, Inzitari M, Salvadori E, et al. Whole-Brain Histogram and Voxel-Based Analyses of Diffusion Tensor Imaging in Patients with Leukoaraiosis: Correlation with Motor and Cognitive Impairment. Am J Neuroradiol. 2007;28: 1313–1319. doi: 10.3174/ajnr.A0555 17698534
16. Nitkunan A, Charlton RA, McIntyre DJO, Barrick TR, Howe FA, Markus HS. Diffusion tensor imaging and MR spectroscopy in hypertension and presumed cerebral small vessel disease. Magn Reson Med. 2008;59: 528–534. doi: 10.1002/mrm.21461 18224697
17. Mesulam M-M. Large-scale neurocognitive networks and distributed processing for attention, language and memory. Ann Neurol. 1990;28: 597–613. 2260847
18. Park H-J, Friston K. Structural and Functional Brain Networks: From Connections to Cognition. Science. 2013;342: 1238411–1238411. doi: 10.1126/science.1238411 24179229
19. Meunier D, Lambiotte R, Bullmore ET. Modular and Hierarchically Modular Organization of Brain Networks. Front Neurosci. 2010;4. doi: 10.3389/fnins.2010.00200 21151783
20. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012; doi: 10.1038/nrn3214 22498897
21. Lawrence AJ, Chung AW, Morris RG, Markus HS, Barrick TR. Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology. 2014;83: 304–311. doi: 10.1212/WNL.0000000000000612 24951477
22. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med. 2017;195: 557–582. doi: 10.1164/rccm.201701-0218PP 28128970
23. Sabit R, Bolton CE, Edwards PH, Pettit RJ, Evans WD, McEniery CM, et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175: 1259–1265. doi: 10.1164/rccm.200701-067OC 17363772
24. D’Agostino R B. Stroke risk profile: adjustment for antihypertensive medication. The Framingham Study. Stroke. 1994;25: 40–43. doi: 10.1161/01.str.25.1.40 8266381
25. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40: 373–383. doi: 10.1016/0021-9681(87)90171-8 3558716
26. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George’s Respiratory Questionnaire. Am Rev Respir Dis. 1992;145: 1321–1327. doi: 10.1164/ajrccm/145.6.1321 1595997
27. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67: 361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x 6880820
28. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62: 782–790. doi: 10.1016/j.neuroimage.2011.09.015 21979382
29. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17: 143–155. doi: 10.1002/hbm.10062 12391568
30. Lambert C, Sam Narean J, Benjamin P, Zeestraten E, Barrick TR, Markus HS. Characterising the grey matter correlates of leukoaraiosis in cerebral small vessel disease. NeuroImage Clin. 2015;9: 194–205. doi: 10.1016/j.nicl.2015.07.002 26448913
31. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10: 186–198. doi: 10.1038/nrn2575 19190637
32. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage. 2002;15: 273–289. doi: 10.1006/nimg.2001.0978 11771995
33. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage. 2009;48: 63–72. doi: 10.1016/j.neuroimage.2009.06.060 19573611
34. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr. 1998;22: 324–333. doi: 10.1097/00004728-199803000-00032 9530404
35. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011;54: 2033–2044. doi: 10.1016/j.neuroimage.2010.09.025 20851191
36. Calamante F, Tournier J-D, Jackson GD, Connelly A. Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. NeuroImage. 2010;53: 1233–1243. doi: 10.1016/j.neuroimage.2010.07.024 20643215
37. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, et al. Mapping Human Whole-Brain Structural Networks with Diffusion MRI. Sporns O, editor. PLoS ONE. 2007;2: e597. doi: 10.1371/journal.pone.0000597 17611629
38. van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. J Neurosci Off J Soc Neurosci. 2011;31: 15775–15786. doi: 10.1523/JNEUROSCI.3539-11.2011 22049421
39. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage. 2010;52: 1059–1069. doi: 10.1016/j.neuroimage.2009.10.003 19819337
40. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002;296: 910–913. doi: 10.1126/science.1065103 11988575
41. Garrison KA, Scheinost D, Finn ES, Shen X, Constable RT. The (in)stability of functional brain network measures across thresholds. NeuroImage. 2015;118: 651–661. doi: 10.1016/j.neuroimage.2015.05.046 26021218
42. Ginestet CE, Fournel AP, Simmons A. Statistical network analysis for functional MRI: summary networks and group comparisons. Front Comput Neurosci. 2014;8. doi: 10.3389/fncom.2014.00051 24834049
43. Drakesmith M, Caeyenberghs K, Dutt A, Lewis G, David AS, Jones DK. Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data. NeuroImage. 2015;118: 313–333. doi: 10.1016/j.neuroimage.2015.05.011 25982515
44. Drakesmith M, Caeyenberghs K, Dutt A, Zammit S, Evans CJ, Reichenberg A, et al. Schizophrenia-like topological changes in the structural connectome of individuals with subclinical psychotic experiences: Connectome Changes in Subclinical Psychosis. Hum Brain Mapp. 2015;36: 2629–2643. doi: 10.1002/hbm.22796 25832856
45. Bassett DS, Bullmore E. Small-world brain networks. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. 2006;12: 512–523. doi: 10.1177/1073858406293182 17079517
46. Zhang J, Wang Y, Wang J, Zhou X, Shu N, Wang Y, et al. White matter integrity disruptions associated with cognitive impairments in type 2 diabetes patients. Diabetes. 2014; DB_140342. doi: 10.2337/db14-0342 24947353
47. van Duinkerken E, Schoonheim MM, IJzerman RG, Klein M, Ryan CM, Moll AC, et al. Diffusion tensor imaging in type 1 diabetes: decreased white matter integrity relates to cognitive functions. Diabetologia. 2012;55: 1218–1220. doi: 10.1007/s00125-012-2488-2 22327286
48. Kennedy KM, Raz N. Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk. Brain Res. 2009;1297: 41–56. doi: 10.1016/j.brainres.2009.08.058 19712671
49. Matsuda-Abedini M, Fitzpatrick K, Harrell WR, Gipson DS, Hooper SR, Belger A, et al. Brain abnormalities in children and adolescents with chronic kidney disease. Pediatr Res. 2018; doi: 10.1038/s41390-018-0037-5 29967532
50. Vemuri P, Knopman DS, Jack CR, Lundt ES, Weigand SD, Zuk SM, et al. Association of Kidney Function Biomarkers with Brain MRI Findings: The BRINK Study. J Alzheimers Dis JAD. 2017;55: 1069–1082. doi: 10.3233/JAD-160834 27767995
51. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12: 483–497. doi: 10.1016/S1474-4422(13)70060-7 23602162
52. Li J, Fei G-H. The unique alterations of hippocampus and cognitive impairment in chronic obstructive pulmonary disease. Respir Res. 2013;14: 1–9. doi: 10.1186/1465-9921-14-1
53. Esser RW, Stoeckel MC, Kirsten A, Watz H, Taube K, Lehmann K, et al. Structural Brain Changes in Patients With COPD. Chest. 2016;149: 426–434. doi: 10.1378/chest.15-0027 26203911
54. Wang C, Ding Y, Shen B, Gao D, An J, Peng K, et al. Altered Gray Matter Volume in Stable Chronic Obstructive Pulmonary Disease with Subclinical Cognitive Impairment: an Exploratory Study. Neurotox Res. 2017;31: 453–463. doi: 10.1007/s12640-016-9690-9 28005183
55. Liao D, Higgins M, Bryan NR, Eigenbrodt ML, Chambless LE, Lamar V, et al. Lower pulmonary function and cerebral subclinical abnormalities detected by MRI: the Atherosclerosis Risk in Communities study. Chest. 1999;116: 150–156. doi: 10.1378/chest.116.1.150 10424519
56. Taki Y, Kinomura S, Ebihara S, Thyreau B, Sato K, Goto R, et al. Correlation between pulmonary function and brain volume in healthy elderly subjects. Neuroradiology. 2013;55: 689–695. doi: 10.1007/s00234-013-1157-6 23440433
57. Sachdev PS, Anstey KJ, Parslow RA, Wen W, Maller J, Kumar R, et al. Pulmonary Function, Cognitive Impairment and Brain Atrophy in a Middle-Aged Community Sample. Dement Geriatr Cogn Disord. 2006;21: 300–308. doi: 10.1159/000091438 16484809
58. Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ. Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology. 2005;237: 251–257. doi: 10.1148/radiol.2371041496 16126931
59. van Dijk EJ, Prins ND, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MMB. Progression of Cerebral Small Vessel Disease in Relation to Risk Factors and Cognitive Consequences: Rotterdam Scan Study. Stroke. 2008;39: 2712–2719. doi: 10.1161/STROKEAHA.107.513176 18635849
60. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341: c3666–c3666. doi: 10.1136/bmj.c3666 20660506
61. Lucas P, Izquierdo JL, Gonzalez-Moro, Frances Fernandez, Lopez V, Cano Bellon. Chronic obstructive pulmonary disease as a cardiovascular risk factor. Results of a case–control study (CONSISTE study). Int J Chron Obstruct Pulmon Dis. 2012; 679. doi: 10.2147/COPD.S36222 23055717
62. Lahousse L, Tiemeier H, Ikram MA, Brusselle GG. Chronic obstructive pulmonary disease and cerebrovascular disease: A comprehensive review. Respir Med. 2015;109: 1371–1380. doi: 10.1016/j.rmed.2015.07.014 26342840
63. Tuladhar AM, van Dijk E, Zwiers MP, van Norden AGW, de Laat KF, Shumskaya E, et al. Structural network connectivity and cognition in cerebral small vessel disease: Structural Network and Cognition. Hum Brain Mapp. 2016;37: 300–310. doi: 10.1002/hbm.23032 26466741
64. Wei R, Li C, Fogelson N, Li L. Prediction of Conversion from Mild Cognitive Impairment to Alzheimer’s Disease Using MRI and Structural Network Features. Front Aging Neurosci. 2016;8. doi: 10.3389/fnagi.2016.00076 27148045
65. Eijlers AJC, van Geest Q, Dekker I, Steenwijk MD, Meijer KA, Hulst HE, et al. Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain. 2018;141: 2605–2618. doi: 10.1093/brain/awy202 30169585
66. Zeestraten EA, Lawrence AJ, Lambert C, Benjamin P, Brookes RL, Mackinnon AD, et al. Change in multimodal MRI markers predicts dementia risk in cerebral small vessel disease. Neurology. 2017;89: 1869–1876. doi: 10.1212/WNL.0000000000004594 28978655
67. Lawrence AJ, Zeestraten EA, Benjamin P, Lambert CP, Morris RG, Barrick TR, et al. Longitudinal decline in structural networks predicts dementia in cerebral small vessel disease. Neurology. 2018;90: e1898–e1910. doi: 10.1212/WNL.0000000000005551 29695593
68. Berlot R, Metzler-Baddeley C, Ikram MA, Jones DK, O’Sullivan MJ. Global Efficiency of Structural Networks Mediates Cognitive Control in Mild Cognitive Impairment. Front Aging Neurosci. 2016;8. doi: 10.3389/fnagi.2016.00292 28018208
69. Du J, Wang Y, Zhi N, Geng J, Cao W, Yu L, et al. Structural brain network measures are superior to vascular burden scores in predicting early cognitive impairment in post stroke patients with small vessel disease. NeuroImage Clin. 2019;22: 101712. doi: 10.1016/j.nicl.2019.101712 30772684
70. Satz P. Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology. 1993;7: 273–295. doi: 10.1037/0894-4105.7.3.273
71. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8: 448–460. 11939702
72. Stern Y. Cognitive reserve☆. Neuropsychologia. 2009;47: 2015–2028. doi: 10.1016/j.neuropsychologia.2009.03.004 19467352
73. Lezak M D., Howieson D B., Loring D W. Neuropsychological Assessment, 4th Edn. 2004.
74. Wolf H, Julin P, Gertz H-J, Winblad B, Wahlund L-O. Intracranial volume in mild cognitive impairment, Alzheimer’s disease and vascular dementia: evidence for brain reserve? Int J Geriatr Psychiatry. 2004;19: 995–1007. doi: 10.1002/gps.1205 15449362
75. Dodd JW, Getov SV, Jones PW. Cognitive function in COPD. European Respiratory Journal. 2010;35: 913–922. doi: 10.1183/09031936.00125109 20356988
76. Aras YG, Tunç A, Güngen BD, Güngen AC, Aydemir Y, Demiyürek BE. The effects of depression, anxiety and sleep disturbances on cognitive impairment in patients with chronic obstructive pulmonary disease. Cogn Neurodyn. 2017;11: 565–571. doi: 10.1007/s11571-017-9449-x 29147148
77. Omachi TA, Blanc PD, Claman DM, Chen H, Yelin EH, Julian L, et al. Disturbed Sleep among COPD Patients is Longitudinally Associated with Mortality and Adverse COPD Outcomes. Sleep Med. 2012;13: 476–483. doi: 10.1016/j.sleep.2011.12.007 22429651
78. Dag E, Bulcun E, Turkel Y, Ekici A, Ekici M. Factors Influencing Cognitive Function in Subjects With COPD. Respiratory Care. 2016;61: 1044–1050. doi: 10.4187/respcare.04403 26932385
79. Emery CF, Shermer RL, Hauck ER, Hsiao ET, MacIntyre NR. Cognitive and psychological outcomes of exercise in a 1-year follow-up study of patients with chronic obstructive pulmonary disease. Health Psychol. 2003;22: 598–604. doi: 10.1037/0278-6133.22.6.598 14640857
80. Xie X, Shi Y, Zhang J. Structural network connectivity impairment and depressive symptoms in cerebral small vessel disease. J Affect Disord. 2017;220: 8–14. doi: 10.1016/j.jad.2017.05.039 28575716
81. Lin F, Wu G, Zhu L, Lei H. Heavy smokers show abnormal microstructural integrity in the anterior corpus callosum: A diffusion tensor imaging study with tract-based spatial statistics. Drug Alcohol Depend. 2013;129: 82–87. doi: 10.1016/j.drugalcdep.2012.09.013 23062873
82. Lin L, Xue Y, Duan Q, Sun B, Lin H, Chen X, et al. Microstructural White Matter Abnormalities and Cognitive Dysfunction in Subcortical Ischemic Vascular Disease: an Atlas-Based Diffusion Tensor Analysis Study. J Mol Neurosci MN. 2015;56: 363–370. doi: 10.1007/s12031-015-0550-5 25859933
83. Zhang H, Wang X, Lin J, Sun Y, Huang Y, Yang T, et al. Reduced regional gray matter volume in patients with chronic obstructive pulmonary disease: a voxel-based morphometry study. Am J Neuroradiol. 2013;34: 334–339. doi: 10.3174/ajnr.A3235 22859277
84. Heinen R, Vlegels N, de Bresser J, Leemans A, Biessels GJ, Reijmer YD. The cumulative effect of small vessel disease lesions is reflected in structural brain networks of memory clinic patients. NeuroImage Clin. 2018;19: 963–969. doi: 10.1016/j.nicl.2018.06.025 30003033
85. Ciccarelli O, Parker GJM, Toosy AT, Wheeler-Kingshott C a. M, Barker GJ, Boulby PA, et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. NeuroImage. 2003;18: 348–359. 12595188
86. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage. 2007;34: 144–155. doi: 10.1016/j.neuroimage.2006.09.018 17070705
87. Metzler-Baddeley C, O’Sullivan MJ, Bells S, Pasternak O, Jones DK. How and how not to correct for CSF-contamination in diffusion MRI. NeuroImage. 2012;59: 1394–1403. doi: 10.1016/j.neuroimage.2011.08.043 21924365
88. Berlot R, Metzler-Baddeley C, Jones DK, O’Sullivan MJ. CSF contamination contributes to apparent microstructural alterations in mild cognitive impairment. NeuroImage. 2014;92: 27–35. doi: 10.1016/j.neuroimage.2014.01.031 24503415
89. Côté M-A, Girard G, Boré A, Garyfallidis E, Houde J-C, Descoteaux M. Tractometer: towards validation of tractography pipelines. Med Image Anal. 2013;17: 844–857. doi: 10.1016/j.media.2013.03.009 23706753
90. Tournier J-D, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage. 2004;23: 1176–1185. doi: 10.1016/j.neuroimage.2004.07.037 15528117
91. Tournier J-D, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35: 1459–1472. doi: 10.1016/j.neuroimage.2007.02.016 17379540
92. Farquharson S, Tournier J-D, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, et al. White matter fiber tractography: why we need to move beyond DTI. J Neurosurg. 2013;118: 1367–1377. doi: 10.3171/2013.2.JNS121294 23540269
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis