#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Two novel and correlated CF-causing insertions in the (TG)mTn tract of the CFTR gene


Autoři: Silvia Pierandrei aff001;  Giovanna Blaconà aff002;  Benedetta Fabrizzi aff003;  Giuseppe Cimino aff004;  Natalia Cirilli aff003;  Nicole Caporelli aff003;  Antonio Angeloni aff002;  Marco Cipolli aff003;  Marco Lucarelli aff002
Působiště autorů: Dept. of Mother-Child and Urologic Sciences, Sapienza University of Rome, Rome, Italy aff001;  Dept. of Experimental Medicine, Sapienza University of Rome, Rome, Italy aff002;  Cystic Fibrosis Care Center, Mother - Child Department, United Hospitals, Ancona, Italy aff003;  Cystic Fibrosis Care Center, Umberto I Hospital, Rome, Italy aff004;  Pasteur Institute Cenci Bolognetti Foundation, Rome, Italy aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222838

Souhrn

Two novel and related pathogenic variants of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene were structurally and functionally characterized. These alterations have not been previously described in literature. Two patients with diagnosis of Cystic Fibrosis (CF) based on the presence of one mutated allele, p.Phe508del, pathological sweat test and clinical symptoms were studied. To complete the genotypes of both patients, an extensive genetic and functional analysis of the CFTR gene was performed. Extensive genetic characterization confirmed the presence of p.Phe508del pathogenic variant and revealed, in both patients, the presence of an insertion of part of intron 10 in intron 9 of the CFTR gene, within the (TG)m repeat, with a variable poly-T stretch. The molecular lesions resulted to be very similar in both patients, with only a difference in the number of T in the poly-T stretch. The functional characterization at RNA level revealed a complete anomalous splicing, without exon 10, from the allele with the insertion of both patients. Consequently, the alleles with the insertions are expected not to contribute to the formation of a functional CFTR protein. Molecular and functional features of these alterations are compatible with the definition of novel CF-causing variants of the CFTR gene. This also allowed the completion of the genetic characterization of both patients.

Klíčová slova:

Alleles – Human genetics – Polymerase chain reaction – Cystic fibrosis – Sweat – Introns – Nucleotide sequencing – Chlorides


Zdroje

1. Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nature reviews Genetics. 2015;16(1):45–56. doi: 10.1038/nrg3849 25404111

2. Lucarelli M, Bruno SM, Pierandrei S, Ferraguti G, Stamato A, Narzi F, et al. A Genotypic-Oriented View of CFTR Genetics Highlights Specific Mutational Patterns Underlying Clinical Macrocategories of Cystic Fibrosis. Mol Med. 2015;21(1):257–75.

3. Lucarelli M, Pierandrei S, Bruno SM, Strom R. The genetics of CFTR: genotype—phenotype relationship, diagnostic challenge and therapeutic implications. In: Sriramulu D, editor. Cystic Fibrosis—Renewed Hopes Through Research. Rijeka: Intech—Open access company; 2012. p. 91–122.

4. Elborn JS. Cystic fibrosis. Lancet. 2016;388(10059):2519–31. doi: 10.1016/S0140-6736(16)00576-6 27140670

5. Lucarelli M, Narzi L, Pierandrei S, Bruno SM, Stamato A, d’Avanzo M, et al. A new complex allele of the CFTR gene partially explains the variable phenotype of the L997F mutation. Genet Med. 2010;12(9):548–55. doi: 10.1097/GIM.0b013e3181ead634 20706124

6. Terlizzi V, Castaldo G, Salvatore D, Lucarelli M, Raia V, Angioni A, et al. Genotype-phenotype correlation and functional studies in patients with cystic fibrosis bearing CFTR complex alleles. J Med Genet. 2017;54(4):224–35. doi: 10.1136/jmedgenet-2016-103985 27738188

7. Slieker MG, Sanders EA, Rijkers GT, Ruven HJ, van der Ent CK. Disease modifying genes in cystic fibrosis. J Cyst Fibros. 2005;4 Suppl 2:7–13.

8. Bombieri C, Seia M, Castellani C. Genotypes and phenotypes in cystic fibrosis and cystic fibrosis transmembrane regulator-related disorders. Semin Respir Crit Care Med. 2015;36(2):180–93. doi: 10.1055/s-0035-1547318 25826586

9. Savi D, Simmonds N, Di Paolo M, Quattrucci S, Palange P, Banya W, et al. Relationship between pulmonary exacerbations and daily physical activity in adults with cystic fibrosis. BMC Pulm Med. 2015;15:151. doi: 10.1186/s12890-015-0151-7 26627849

10. Savi D, Schiavetto S, Simmonds NJ, Righelli D, Palange P. Effects of Lumacaftor/Ivacaftor on physical activity and exercise tolerance in three adults with cystic fibrosis. J Cyst Fibros. 2019;18(3):420–4. doi: 10.1016/j.jcf.2019.03.001 30879989

11. Radtke T, Hebestreit H, Gallati S, Schneiderman JE, Braun J, Stevens D, et al. CFTR Genotype and Maximal Exercise Capacity in Cystic Fibrosis: A Cross-sectional Study. Ann Am Thorac Soc. 2018;15(2):209–16. doi: 10.1513/AnnalsATS.201707-570OC 29140739

12. Amaral MD, Balch WE. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J Cyst Fibros. 2015;14(6):687–99. doi: 10.1016/j.jcf.2015.09.006 26526359

13. Chang EH, Zabner J. Precision Genomic Medicine in Cystic Fibrosis. Clin Transl Sci. 2015;8(5):606–10. doi: 10.1111/cts.12292 26073768

14. Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell. 2016;27(3):424–33. doi: 10.1091/mbc.E14-04-0935 26823392

15. Corvol H, Thompson KE, Tabary O, le RP, Guillot L. Translating the genetics of cystic fibrosis to personalized medicine. Transl Res. 2016;168:40–9. doi: 10.1016/j.trsl.2015.04.008 25940043

16. Rossi T, Grandoni F, Mazzilli F, Quattrucci S, Antonelli M, Strom R, et al. High frequency of (TG)mTn variant tracts in the cystic fibrosis transmembrane conductance regulator gene in men with high semen viscosity. Fertil Steril. 2004;82(5):1316–22. doi: 10.1016/j.fertnstert.2004.03.065 15533353

17. Chen H, Ruan YC, Xu WM, Chen J, Chan HC. Regulation of male fertility by CFTR and implications in male infertility. Human reproduction update. 2012;18(6):703–13. doi: 10.1093/humupd/dms027 22709980

18. Jiang L, Jin J, Wang S, Zhang F, Dai Y, Shi L, et al. CFTR gene mutations and polymorphism are associated with non-obstructive azoospermia: From case-control study. Gene. 2017;626:282–9. doi: 10.1016/j.gene.2017.04.044 28456595

19. Bombieri C, Claustres M, De BK, Derichs N, Dodge J, Girodon E, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros. 2011;10 Suppl 2:S86–102.

20. Munck A, Mayell SJ, Winters V, Shawcross A, Derichs N, Parad R, et al. Cystic Fibrosis Screen Positive, Inconclusive Diagnosis (CFSPID): A new designation and management recommendations for infants with an inconclusive diagnosis following newborn screening. J Cyst Fibros. 2015;14(6):706–13. doi: 10.1016/j.jcf.2015.01.001 25630966

21. Machogu E, Ren CL. Novel insights into the diagnostic and therapeutic challenges of the CFTR metabolic syndrome/CF screen positive indeterminate diagnosis. Pediatric pulmonology. 2016;51(S44):S45–S8. doi: 10.1002/ppul.23478 27662103

22. Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N, et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J Pediatr. 2017;181S:S4–S15 e1. doi: 10.1016/j.jpeds.2016.09.064 28129811

23. Wayne PA. Sweat testing: sample collection and quantitative analysis: approved guideline. Clinical and Laboratory Standards Institute (CLSI); 2009.

24. Heap S, Griffiths P, Elborn S, Harris B, Wayte A, Wallis CE, et al. Guidelines for the performance of the sweat test for the investigation of Cystic Fibrosis in the UK 2nd version (these guidelines supersede the 2003 guidelines). An evidence based guideline. 2014.

25. Terlizzi V, Carnovale V, Castaldo G, Castellani C, Cirilli N, Colombo C, et al. Clinical expression of patients with the D1152H CFTR mutation. J Cyst Fibros. 2015.

26. Sosnay PR, Siklosi KR, Van GF, Kaniecki K, Yu H, Sharma N, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet. 2013;45(10):1160–7. doi: 10.1038/ng.2745 23974870

27. Lucarelli M. New era of cystic fibrosis: full mutational analysis and personalized therapy. World Journal of Medical Genetics. 2017;4(54):224–35.

28. Ivanov M, Matsvay A, Glazova O, Krasovskiy S, Usacheva M, Amelina E, et al. Targeted sequencing reveals complex, phenotype-correlated genotypes in cystic fibrosis. BMC Med Genomics. 2018;11(Suppl 1):13. doi: 10.1186/s12920-018-0328-z 29504914

29. Bergougnoux A, D’Argenio V, Sollfrank S, Verneau F, Telese A, Postiglione I, et al. Multicenter validation study for the certification of a CFTR gene scanning method using next generation sequencing technology. Clinical chemistry and laboratory medicine. 2018;56(7):1046–53. doi: 10.1515/cclm-2017-0553 29427548

30. Lucarelli M, Porcaro L, Biffignandi A, Costantino L, Giannone V, Alberti L, et al. A New Targeted CFTR Mutation Panel Based on Next-Generation Sequencing Technology. J Mol Diagn. 2017;19(5):788–800. doi: 10.1016/j.jmoldx.2017.06.002 28736296

31. Lucarelli M, Bruno SM, Pierandrei S, Ferraguti G, Testino G, Truglio G, et al. The Impact on Genetic Testing of Mutational Patterns of CFTR Gene in Different Clinical Macrocategories of Cystic Fibrosis. J Mol Diagn. 2016;18(4):554–65. doi: 10.1016/j.jmoldx.2016.02.007 27157324

32. Gibson LE, Cooke RE. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics. 1959;23(3):545–9. 13633369

33. DelMar EG, Largman C, Brodrick JW, Geokas MC. A sensitive new substrate for chymotrypsin. Anal Biochem. 1979;99(2):316–20. doi: 10.1016/s0003-2697(79)80013-5 574722

34. Gullo L, Graziano L, Babbini S, Battistini A, Lazzari R, Pezzilli R. Faecal elastase 1 in children with cystic fibrosis. Eur J Pediatr. 1997;156(10):770–2. doi: 10.1007/s004310050709 9365065

35. Lucarelli M, Narzi L, Piergentili R, Ferraguti G, Grandoni F, Quattrucci S, et al. A 96-well formatted method for exon and exon/intron boundary full sequencing of the CFTR gene. Anal Biochem. 2006;353(2):226–35. doi: 10.1016/j.ab.2006.03.022 16635477

36. Ferraguti G, Pierandrei S, Bruno SM, Ceci F, Strom R, Lucarelli M. A template for mutational data analysis of the CFTR gene. Clin Chem Lab Med. 2011;49(9):1447–51. doi: 10.1515/CCLM.2011.604 21627495

37. Auriche C, Di Domenico EG, Pierandrei S, Lucarelli M, Castellani S, Conese M, et al. CFTR expression and activity from the human CFTR locus in BAC vectors, with regulatory regions, isolated by a single-step procedure. Gene Ther. 2010;17(11):1341–54. doi: 10.1038/gt.2010.89 20535216

38. Lucarelli M, Bruno SM, Pierandrei S, Ferraguti G, Testino G, Truglio G, et al. The Impact on Genetic Testing of Mutational Patterns of CFTR Gene in Different Clinical Macrocategories of Cystic Fibrosis. J Mol Diagn. 2016;18(4):554–65. doi: 10.1016/j.jmoldx.2016.02.007 27157324

39. Audrezet MP, Chen JM, Raguenes O, Chuzhanova N, Giteau K, Le Marechal C, et al. Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms. Hum Mutat. 2004;23(4):343–57. doi: 10.1002/humu.20009 15024729

40. Chu CS, Trapnell BC, Curristin S, Cutting GR, Crystal RG. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet. 1993;3(2):151–6. doi: 10.1038/ng0293-151 7684646


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#