#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Characterization and variation of the rhizosphere fungal community structure of cultivated tetraploid cotton


Autoři: Qinghua Qiao aff001;  Jingxia Zhang aff002;  Changle Ma aff001;  Furong Wang aff001;  Yu Chen aff002;  Chuanyun Zhang aff002;  Hui Zhang aff001;  Jun Zhang aff001
Působiště autorů: Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China aff001;  Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0207903

Souhrn

Rhizosphere fungal communities exert important influencing forces on plant growth and health. However, information on the dynamics of the rhizosphere fungal community structure of the worldwide economic crop cotton (Gossypium spp.) is limited. In the present study, next-generation sequencing of nuclear ribosomal internal transcribed spacer-1 (ITS1) was performed to characterize the rhizosphere fungal communities of G. hirsutum cv. TM-1 (upland cotton) and G. barbadense cv. Hai 7124 (island cotton). The plants were grown in field soil (FS) that had been continuously cropped with cotton and nutrient-rich soil (NS) that had not been cropped. The fungal species richness, diversity, and community composition were analyzed and compared among the soil resources, cotton genotypes, and developmental stages. We found that the fungal community structures were different between the rhizosphere and bulk soil and the difference were significantly varied between FS and NS. Our results suggested that cotton rhizosphere fungal community structure variation may have been primarily influenced by the interaction of cotton roots with different soil resources. We also found that the community composition of the cotton rhizosphere fungi varied significantly during different developmental stages. In addition, we observed fungi that was enriched or depleted at certain developmental stages and genotypes in FS and NS, and these insights can lay a foundation for deep research into the dynamics of pathogenic fungi and nutrient absorption of cotton roots. This research illustrates the characteristics of the cotton rhizosphere fungal communities and provides important information for understanding the potential influences of rhizosphere fungal communities on cotton growth and health.

Klíčová slova:

Fungi – Plant fungal pathogens – Fungal structure – Rhizosphere – Agricultural soil science – Community structure – Seedlings – Cotton


Zdroje

1. Perez-Jaramillo JE, Mendes R, Raaijmakers JM. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant molecular biology. 2016;90(6):635–44. https://doi.org/10.1007/s11103-015-0337-7 26085172

2. Tkacz A, Cheema J, Chandra G, Grant A, Poole PS. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 2015;9(11):2349–59. https://doi.org/10.1038/ismej.2015.41 25909975

3. Kazeeroni EA, Al-Sadi AM. 454-pyrosequencing reveals variable fungal diversity across farming systems. Front Plant Sci. 2016;7:314. https://doi.org/10.3389/fpls.2016.00314 27014331

4. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, et al. The soil microbiome influences grapevine-associated microbiota. mBio. 2015;6(2):e02527–14. https://doi.org/10.1128/mBio.02527-14 25805735

5. Bulgarelli D, Garrido-Oter R, Münch Philipp C, Weiman A, Dröge J, Pan Y, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell host & microbe. 2015;17(3):392–403. https://doi.org/10.1016/j.chom.2015.01.011 25732064

6. Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbe J, et al. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PloS one. 2013;8(10):e76382. https://doi.org/10.1371/journal.pone.0076382 24146861

7. Wu Q-S, Zou Y-N, Huang Y-M. The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecology. 2013;6(1):37–43. https://doi.org/10.1016/j.funeco.2012.09.002

8. Vd Gannes, Eudoxie G, Bekele I, Hickey WJ. Relations of microbiome characteristics to edaphic properties of tropical soils from Trinidad. Frontiers in microbiology. 2015;6:1045. https://doi.org/10.3389/fmicb.2015.01045 26483772

9. Xu Z, Yu G, Zhang X, Ge J, He N, Wang Q, et al. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of changbai mountain. Appl Soil Ecol. 2015;86:19–29. https://doi.org/10.1016/j.apsoil.2014.09.015

10. Eva O, Barbara G, Wolfgang W, Andrea W, Christian S, Yvonne S, et al. Microbial decomposition of 13C- labeled phytosiderophores in the rhizosphere of wheat: Mineralization dynamics and key microbial groups involved. Soil Biol Biochem. 2016;98:196–207. https://doi.org/10.1016/j.soilbio.2016.04.014

11. Itoh K. Study of the ecology of pesticide-degrading microorganisms in soil and an assessment of pesticide effects on the ecosystem. J Pestic Sci. 2014;39(3):174–6. https://doi.org/10.1584/jpestics.J14-03

12. Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. Journal of Environmental Management. 2018;217:858–70. https://doi.org/10.1016/j.jenvman.2018.04.022 29660711

13. Dai P, Zong Z, Ma Q, Wang Y. Isolation, evaluation and identification of rhizosphere actinomycetes with potential application for biocontrol of Valsa mali. European Journal of Plant Pathology. 2018;153(1):1–12. https://doi.org/10.1007/s10658-018-1547-z

14. Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC, et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. The ISME journal. 2016;10(11):2593–604. https://doi.org/10.1038/ismej.2016.65 27168143

15. Thion CE, Poirel JD, Cornulier T, De Vries FT, Bardgett RD, Prosser JI. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS microbiology ecology. 2016;92(7). https://doi.org/10.1093/femsec/fiw091 27130939

16. Cotta SR, Dias ACF, Seldin L, Andreote FD, Elsas JDv. The diversity and abundance of phytase genes (β-propeller phytases) in bacterial communities of the maize rhizosphere. Lett Appl Microbiol. 2016;62(3):264–8. https://doi.org/10.1111/lam.12535 26661994

17. Kertesz MA, Mirleau P. The role of soil microbes in plant sulphur nutrition. J Exp Bot. 2004;55(404):1939. https://doi.org/10.1093/jxb/erh176 15181108

18. Igiehon NO, Babalola OO. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. International Journal of Environmental Research & Public Health. 2018;15(4). https://doi.org/10.3390/ijerph15040574 29570619

19. Ellouze W, Esmaeili Taheri A, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A, et al. Soil Fungal Resources in Annual Cropping Systems and Their Potential for Management. BioMed Res Int. 2014;2014:15. https://doi.org/10.1155/2014/531824 25247177

20. Wakelin SA, Warren RA, Harvey PR, Ryder MH. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fert Soils. 2004;40(1):36–43. https://doi.org/10.1007/s00374-004-0750-6

21. Mittal V, Singh O, Nayyar H, Kaur J, Tewari R. Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem. 2008;40(3):718–27. https://doi.org/10.1016/j.soilbio.2007.10.008

22. Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotechnol. 2009;159(2):330–42. https://doi.org/10.1007/s12010-009-8590-3 19277482

23. Magdalena F, Silja EH, Marta B, Jedryczka M. Fungal biodiversity and their role in soil health. Front Microbiol. 2018;9:707. https://doi.org/10.3389/fmicb.2018.00707 29755421

24. Chapelle E, Mendes R, Bakker PA, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. ISME J. 2016;10(1):265–8. https://doi.org/10.1038/ismej.2015.82 26023875

25. Zhang Y, He J, Jia L-J, Yuan T-L, Zhang D, Guo Y, et al. Cellular tracking and gene profiling of fusarium graminearum during maize stalk rot disease development elucidates its strategies in confronting phosphorus limitation in the host apoplast. PLOS Pathog. 2016;12(3):e1005485. https://doi.org/10.1371/journal.ppat.1005485 26974960

26. Rebbeck J, Malone MA, Short D, Kasson MT, O’Neal ES, Davis DD. First report of verticillium wilt caused by Verticillium nonalfalfaeon tree-of-heaven (Ailanthus altissima) in Ohio. Plant Dis. 2013;97(7):999–1000. https://doi.org/10.1094/PDIS-01-13-0062-PDN 30722582

27. Manjunatha SV, Naik MK, Mohamed FR, Goswami RS. Evaluation of bio-control agents for management of dry root rot of chickpea caused by Macrophomina phaseolina. Crop Protection. 2013;45(2):147–50. https://doi.org/10.1016/j.cropro.2012.09.003

28. Bacharis C, Gouziotis A, Kalogeropoulou P, Koutita O, Tzavella-Klonari K, Karaoglanidis GS. Characterization of Rhizoctonia spp. isolates associated with damping-off disease in cotton and tobacco seedlings in Greece. Plant Dis. 2010;94(11):1314–22. https://doi.org/10.1094/PDIS-12-09-0847 30743646

29. Sanogo S, Zhang J. Resistance sources, resistance screening techniques and disease management for Fusarium wilt in cotton. Euphytica. 2015;207(2):255–71. https://doi.org/10.1007/s10681-015-1532-y

30. Laidou IA, Koulakiotu EK, Thanassoulopoulos CC. First report of stem canker caused by Alternaria alternata on cotton. Plant Dis. 2007;84(1):103. https://doi.org/10.1094/PDIS.2000.84.1.103A

31. Zhang W, Zhang H, Qi F, Jian G. Generation of transcriptome profiling and gene functional analysis in Gossypium hirsutum upon Verticillium dahliae infection. Biochem Bioph Res Co. 2016;473(4):879–85. https://doi.org/10.1016/j.bbrc.2016.03.143

32. Knox O, Vadakattu G, Lardner R. Field evaluation of the effects of cotton variety and GM status on rhizosphere microbial diversity and function in Australian soils. Soil Res. 2014;52(2):203–215. https://doi.org/10.1071/SR12361

33. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488(7409):86–90. https://doi.org/10.1038/nature11237 22859206

34. Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G, et al. The Variation in the Rhizosphere Microbiome of Cotton with Soil Type, Genotype and Developmental Stage. Sci Rep. 2017;7(1):3940. https://doi.org/10.1038/s41598-017-04213-7 28638057

35. Schloss PD. A high-throughput DNA sequence aligner for microbial ecology studies. PloS one. 2009;4(12):e8230. https://doi.org/10.1371/journal.pone.0008230 20011594

36. Whalley WR, Riseley B, Leeds-Harrison PB, Bird NRA, Leech PK, Adderley WP. Structural differences between bulk and rhizosphere soil. Eur J Soil Sci. 2005;56(3):353–60. https://doi.org/10.1111/j.1365-2389.2004.00670.x

37. Gould IJ, Quinton JN, Weigelt A, Deyn GBD, Bardgett RD. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol Lett. 2016;19(9):1140–39. https://doi.org/10.1111/ele.12652 27459206

38. Odell RE, Dumlao MR, Samar D, Silk WK. Stage-dependent border cell and carbon flow from roots to rhizosphere. American journal of botany. 2008;95(4):441–6. https://doi.org/10.3732/ajb.95.4.441 21632368

39. Bjørnlund L, Mørk S, Vestergård M, Rønn R. Trophic interactions between rhizosphere bacteria and bacterial feeders influenced by phosphate and aphids in barley. Biol Fert Soils 2006;43(1):1–11. https://doi.org/10.1007/s00374-005-0052-7

40. Stumpf L, Pauletto EA, Pinto LFS. Soil aggregation and root growth of perennial grasses in a constructed clay minesoil. Soil Till Res. 2016;161:71–8. https://doi.org/10.1016/j.still.2016.03.005

41. Zhu S, Vivanco JM, Manter DK. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl Soil Ecol. 2016;107:324–33. https://doi.org/10.1016/j.apsoil.2016.07.009

42. Watson BS, Bedair MF, Urbanczyk-Wochniak E, Huhman DV, Yang DS, Allen SN, et al. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. Plant Physiol. 2015;167(4):1699–716. https://doi.org/10.1104/pp.114.253054 25667316

43. Haichar FeZ, Santaella C, Heulin T, Achouak W. Root exudates mediated interactions belowground. Soil Biol Biochem. 2014;77:69–80. https://doi.org/10.1016/j.soilbio.2014.06.017

44. Sasse J, Martinoia E, Northen T. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 2018; 23(1):25–41. https://doi.org/10.1016/j.tplants.2017.09.003 29050989

45. Plancot B, Santaella C, Jaber R, Kiefer-Meyer MC, Follet-Gueye M-L, Leprince J, et al. Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors. Plant Physiol. 2013;163(4):1584. https://doi.org/10.1104/pp.113.222356 24130195

46. Curlango-Rivera G, Huskey DA, Mostafa A, Kessler JO, Xiong Z, Hawes MC. Intraspecies variation in cotton border cell production: rhizosphere microbiome implications. Am J Bot. 2013;100(9):1706–12. https://doi.org/10.3732/ajb.1200607 23942085

47. Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, et al. Microbiome and exudates of the root and rhizosphere of brachypodium distachyon, a model for wheat. PloS one. 2016;11(10):e0164533. https://doi.org/10.1371/journal.pone.0164533 27727301

48. Chen Z, Tian Y, Zhang Y, Song BR, Li H, Chen Z. Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands. Ecol Eng. 2016;92:243–50. https://doi.org/10.1016/j.ecoleng.2016.04.001

49. Bulgarelli D, Schlaeppi K, Spaepen S, Themaat EVLv, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64(1):807–38. https://doi.org/10.1146/annurev-arplant-050312-120106 23373698

50. Edwardsa J, Johnsona C, Santos-Medellína C, Luriea E, Podishettyb NK, Bhatnagarc S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Nat Acad Sci. 2015;112(8):E911–E20. https://doi.org/10.1073/pnas.1414592112 25605935

51. Xu L, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M. Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem. 2012;46:26–32. https://doi.org/10.1016/j.soilbio.2011.11.010

52. Bakker MG, Chaparro JM, Manter DK, Vivanco JM. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant Soil. 2015;392(1–2):115–26. https://doi.org/10.1007/s11104-015-2446-0

53. Ling N, Kaiying D, Song Y, Wu Y, Zhao J, Raza W, et al. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiol Res. 2014;169(7–8):570. https://doi.org/10.1016/j.micres.2013.10.004 24263158

54. Gleń-Karolczyk K, Boligłowa E, Antonkiewicz J. Organic fertilization shapes the biodiversity of fungal communities associated with potato dry rot. Applied Soil Ecology. 2018. https://doi.org/10.1016/j.apsoil.2018.04.012

55. Zhang W, Long X, Huo X, Chen Y, Lou K. 16S rRNA-Based PCR-DGGE Analysis of Actinomycete Communities in Fields with Continuous Cotton Cropping in Xinjiang, China. Microbial Ecol. 2013;66(2):385–93. https://doi.org/10.1007/s00248-012-0160-5 23299346

56. Vargas Gil S, Meriles J, Conforto C, Figoni G, Basanta M, Lovera E, et al. Field assessment of soil biological and chemical quality in response to crop management practices. World J Microbiol Biotech. 2009;25(3):439–48. https://doi.org/10.1007/s00267-009-9319-3

57. Peralta AL, Sun Y, Mcdaniel MD, Lennon JT. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere. 2018;9(5):e02235. https://doi.org/10.1002/ecs2.2235

58. Bai L, Cui J, Jie W, Cai B. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiol Res. 2015;180(Supplement C):49–56. https://doi.org/10.1016/j.micres.2015.07.007 26505311

59. Fu Q, Liu C, Ding N, Lin Y, Guo B, Luo J, et al. Soil microbial communities and enzyme activities in a reclaimed coastal soil chronosequence under rice–barley cropping. J Soil Sediment. 2012;12(7):1134–44. https://doi.org/10.1007/s11368-012-0544-7

60. Baudoin E, Benizri E, Guckert A. Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. ApplSoil Ecol. 2002;19(2):135–45. https://doi.org/10.1016/S0929-1393(01)00185-8

61. Okubo T, Tokida T, Ikeda S, Bao Z, Tago K, Hayatsu M, et al. Effects of elevated carbon dioxide, elevated temperature, and rice growth stage on the community structure of rice root-associated bacteria. Microbes Environ. 2014;29(2):184–90. https://doi.org/10.1264/jsme2.me14011 24882221

62. İnceoğlu Ö, Salles JF, Overbeek Lv, Elsas JDv. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol. 2010;76(11):3675–584. https://doi.org/10.1128/AEM.00040-10 20363788

63. Li X, Rui J, Mao Y, Yannarell A, Mackie R. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem. 2014;68:392–401. https://doi.org/10.1016/j.soilbio.2013.10.017

64. Breidenbach B, Pump J, Dumont MG. Microbial community structure in the rhizosphere of rice plants. Front Microbiol. 2016;6:1537. https://doi.org/10.3389/fmicb.2015.01537 26793175

65. Schlemper TR, Mfa L, Lucheta AR, Shimels M, Bouwmeester HJ, van Veen JA, et al. Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS microbiology ecology. 2017;93(8):1–11. https://doi.org/10.1093/femsec/fix096 28830071

66. Schmidt CS, Alavi M, Cardinale M, Müller H, Berg G. Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biology and Fertility of Soils. 2012;48(8):947–60. https://doi.org/10.1007/s00374-012-0688-z

67. Elsharkawya MM, Shivannab MB, Manchanahally, Meerab S, Hyakumachic M. Mechanism of induced systemic resistance against anthracnose disease in cucumber by plant growth-promoting fungi. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. 2015;65(4):287–99. https://doi.org/10.1080/09064710.2014.1003248

68. Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, et al. Nrt1.1b Is Associated with Root Microbiota Composition and Nitrogen Use in Field-Grown Rice. Nature Biotechnology. 2019;37:676–84. https://doi.org/10.1038/s41587-019-0104-4 31036930

69. Wang Z, Li T, Wen X, Liu Y, Han J, Liao Y, et al. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth. Front Microbiol. 2017;8:1301. https://doi.org/10.3389/fmicb.2017.01301 28744278

70. Poli A, Lazzari A, Prigione V, Voyron S, Spadaro D, Varese GC. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils. Fungal Biol. 2016;120(6–7):862–72. https://doi.org/10.1016/j.funbio.2016.03.008 27268246

71. Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3(4):470–80. https://doi.org/10.1038/s41564-018-0129-3 29556109

72. A C-L, A D, A O, M E-U, T K. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Science Signaling. 2016;9(409):ra1. https://doi.org/10.1126/scisignal.aaa8271 26732761

73. Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome. 2019;7(59). https://doi.org/10.1186/s40168-019-0677-7 30975184

74. Jogaiah S, Abdelrahman M, Phan Tran L-S, Ito Shin-ichi. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany. 2013;64(12):3829–42. https://doi.org/10.1093/jxb/ert212 23956415

75. Morales A, Marysol A, Valenzuela E, Rubio R, Borie F. Effect of inoculation with Penicillium albidum, a phosphate-solubilizing fungus, on the growth of Trifolium pratense cropped in a volcanic soil. J Basic Microb. 2007;47(3):275–80. https://doi.org/10.1002/jobm.200610255 17518421

76. Gong M, Du P, Liu X, Zhu C. Transformation of Inorganic P Fractions of Soil and Plant Growth Promotion by Phosphate-solubilizing Ability of Penicillium oxalicum I1. J Microbiol. 2014;52(12):1012–9. https://doi.org/10.1007/s12275-014-4406-4 25363630

77. Al-Hosni K, Shahzad R, Latif Khan A, Muhammad Imran Q, Al Harrasi A, Al Rawahi A, et al. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. Journal of Plant Interactions. 2018;13(1):112–8. https://doi.org/10.1080/17429145.2018.1432773

78. JN N, JK P, DG W. Development of Gibberella Ear Rot on Processing Sweet Corn Hybrids Over an Extended Period of Harvest. Plant Disease. 2007;91(2):171–5. https://doi.org/10.1094/PDIS-91-2-0171 30781000


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#