#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Chile (Capsicum annuum) plants transformed with the RB gene from Solanum bulbocastanum are resistant to Phytophthora capsici


Autoři: Suman Bagga aff001;  Yvonne Lucero aff001;  Kimberly Apodaca aff001;  Wathsala Rajapakse aff001;  Phillip Lujan aff002;  Jose Luis Ortega aff001;  Champa Sengupta-Gopalan aff001
Působiště autorů: Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States of America aff001;  Department of Entomology, Plant Pathology, Weed Science, New Mexico State University, Las Cruces, NM, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223213

Souhrn

Phytophthora capsici is a soil borne pathogen, and is among the most destructive pathogens for Capsicum annuum (chile). P. capsici is known to cause diseases on all parts of the chile plants. Therefore, it requires independent resistance genes to control disease symptoms that are induced by each of the P. capsici strains. This requirement of multiple resistance genes to confer resistance to P. capsici, in chile makes breeding for resistance a daunting pursuit. Against this backdrop, a genetic engineering approach would be to introduce a broad host resistance gene into chile in order to protect it from different races of P. capsici. Notably, a broad host resistance gene RB from Solanum bulbocastanum has been shown to confer resistance to P. infestans in both S. tuberosum and S. lycopersicum. We agroinfiltrated the RB gene into the leaves of susceptible chile plants, demonstrating that the gene is also capable of lending resistance to P. capsici in chile. We introduced the RB gene into chile by developing an Agrobacterium tumefaciens mediated transformation system. The integration of the RB gene into the genome of the primary transformants and its subsequent transfer to the F1 generation was confirmed by genomic PCR using primers specific for the RB gene. A 3:1 ratio for the presence and absence of the RB gene was observed in the F1 progeny. In addition to showing resistance to P. capsici in a leaf inoculation experiment, about 30% of the F1 progeny also exhibited resistance to root inoculation. Our data, when taken together, suggests that the RB gene from S. bulbocastanum confers resistance against P. capsici in C. annuum, thereby demonstrating that the RB gene has an even broader host range than reported in the literature–both in terms of the host and the pathogen.

Klíčová slova:

Plant pathology – Plant pathogens – Polymerase chain reaction – Genetically modified plants – Leaves – Seeds – Agrobacteria – Agrobacterium tumefaciens


Zdroje

1. Barchenger DW, Lamour KH, Bosland PW. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Front. Plant Sci. 2018; 9.

2. Flor HH. Current status of the gene-for-gene concept. Ann Rev Phytopath. 1971; 9:275–296.

3. Dangl JL, Horvath DM, Staskawicz BJ. Pivoting the plant immune system from dissection to deployment. Science. 2013; 341:746–751. doi: 10.1126/science.1236011 23950531

4. Hulbert SH, Webb CA, Smith SM, Sun Q. Resistance gene complexes: evolution and utilization. Ann Rev Phytopath. 2001; 39:285–312.

5. Ellis J, Dodds P, Pryor T. The generation of plant disease resistance gene specificities. Trends Plant Sci. 2000; 5:373–379. 10973092

6. Van Der Vossen EA, Van Der Voort JNR, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein‐Lankhorst RM. Homologues of a single resistance‐gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J. 2000; 23:567–576. doi: 10.1046/j.1365-313x.2000.00814.x 10972883

7. Sy O, Bosland PW, Steiner R. Inheritance of phytophthora stem blight resistance as compared to phytophthora root rot and phytophthora foliar blight resistance in Capsicum annuum L. J Amer Soc Hortic Sci. 2005; 130:75–78.

8. Monroy-Barbosa A, Bosland PW. Genetic analysis of Phytophthora root rot race-specific resistance in chile pepper. J Amer Soc Hortic Sci. 2008; 133:825–829.

9. Wang P, Wang L, Guo J, Yang W. Shen H. Molecular mapping of a gene conferring resistance to Phytophthora capsici Leonian race 2 in pepper line PI201234 (Capsicum annuum L.). Mol. Breed. 2016; 36:66.

10. Thabuis A, Palloix A, Servin B, Daubeze AM, Signoret P, Lefebvre V. Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breed. 2004b; 14:9–20.

11. Xu X, Chao J, Cheng X, Wang R, Sun B, Wang H, Luo S, Xu X, Wu T, Li Y. Mapping of a novel race specific resistance gene to phytophthora root rot of pepper (Capsicum annuum) using bulked segregant analysis combined with specific length amplified fragment sequencing strategy. PLoS One. 2016;11: e0151401 doi: 10.1371/journal.pone.0151401 26992080

12. Thabuis A V. Lefebvre G. Bernard AM. Daubeze T. Phaly E. Pochard, and Palloix A. Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to Phytophthora capsici in pepper. Theor. Appl. Genet. 2004a; 109:342–351. doi: 10.1007/s00122-004-1633-9 15014880

13. Dong OX, Ronald PC. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol. 2019; 180:26–38. doi: 10.1104/pp.18.01224 30867331

14. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S. A maize resistance gene functions against bacterial streak disease in rice. Proc Nat Acad Sci. 2005;102:15383–15388. doi: 10.1073/pnas.0503023102 16230639

15. Horvath DM, Stall RE, Jones JB, Pauly MH, Vallad GE, Dahlbeck D, Staskawicz B, Scott JW. Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS One. 2012; 7: e42036 doi: 10.1371/journal.pone.0042036 22870280

16. Kunwar S. Iriarte, Fan Q, Evaristo da Silva E, L Ritchie, Nguyen NS, Freeman JH, Stall RE, Jones JB, Minsavage GV, Colee J. Transgenic expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of tomato. Phytopath. 2018; 108:1402–1411.

17. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Nat Aca Sci 2003; 100:9128–9133.

18. Van der Vossen EA, Gros J, Sikkema A, Muskens M, Wouters D, Pereira A, Allefs S. The Rpi‐blb2 gene from Solanum bulbocastanum is an Mi‐1 gene homolog conferring broad‐spectrum late blight resistance in potato. Plant J. 2005; 44:208–222. doi: 10.1111/j.1365-313X.2005.02527.x 16212601

19. Kuhl JC, Zarka K, Coombs J, Kirk WW, Douches DS. Late blight resistance of RB transgenic potato lines. J Am Soc Hortic Sci. 2007; 132:783–789.

20. Ortega JL, Wilson OL, Sengupta-Gopalan C. The 5’ untranslated region of the soybean cytosolic glutamine synthetase ß1 gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants. Mol Genet Genomics 2012; 287:881–893. doi: 10.1007/s00438-012-0724-6 23080263

21. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1962; 15:473–497.

22. Liu JX, Yu YX, Lei JJ, Chen GJ, Cao BH. Study on Agrobacterium-mediated Transformation of pepper with Barnase and Cre Gene. Agricultural Sciences in China 2009; 8:947–955.

23. Tuite J. Plant pathological methods. Fungi and bacteria: Burgess Pub. 1967. Minneapolis, MN.

24. Monroy-Barbosa A, Bosland PW. A rapid technique for multiple-race disease screening of Phytophthora foliar blight on single Capsicim annuum L. plants. HortSci. 2010; 45: 1563–1566.

25. Reeves G, Monroy-Barbosa A, Bosland PW. A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici. Phytopath. 2013; 103:472–478.

26. Seger M, Gebril S, Tabilona J, Peel A, Sengupta-Gopalan C. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgeni tobacco. Planta 2015; 241:69–81. doi: 10.1007/s00425-014-2165-4 25213117

27. Richter HE, Sandal NN, Marcker KA, Sengupta-Gopalan C. Characterization and genomic organization of a highly expressed late nodulin gene subfamily in Soybean. Mol Gen Genet. 1991; 229:445–452. doi: 10.1007/bf00267468 1840639

28. de Vries SC, Springer J, Wessels JGH. Diversity of abundant mRNA sequences and pattern of protein synthesis in etiolated and greened pea seedlings. Planta 1982; 156:120–135.

29. Van Der Vossen EA, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad‐spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J. 2003; 6:867–882.

30. Wydro M, Kozubek E, Lehmann P. Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochimica Polonica-English ed. 2006; 53: 289.

31. Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med. 2013; 1. doi: 10.4172/atbm.1000103 25077181

32. Rommens CM, Salmeron JM, Oldroyd GE, Staskawicz BJ. Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell. 1995; 7:1537–1544. doi: 10.1105/tpc.7.10.1537 7580250

33. Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz B.J. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Nat Acad Sci. 1999; 96:14153–14158. doi: 10.1073/pnas.96.24.14153 10570214

34. Norkunas K, Harding R, Dale J, Dugdale B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods. 2018; 14:71. doi: 10.1186/s13007-018-0343-2 30159002

35. Tzfira T, Frankman LR, Vaidya M, Citovsky V. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol. 2003; 133:1011–1023. doi: 10.1104/pp.103.032128 14551323

36. Van der Hoorn RA, Laurent F, Roth R, De Wit PJ. Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr 9/Cf-9-induced and Avr 4/Cf-4-induced necrosis. Mol Plant-Microbe Interac. 2000; 13:439–446.

37. Ma L, Lukasik E, Gawehns F, Takken FL. The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves. In Plant Fungal Pathogens 2012; (pp. 61–74). Humana Press.

38. Bashandy H, Jalkanen S, Teeri TH. Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods, 2015; 1: 47.

39. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Nat Acad Sci. 2014; 111:5135–5140. doi: 10.1073/pnas.1400975111 24591624

40. Halterman DA, Kramer LC, Wielgus S, Jiang J. Performance of transgenic potato containing the late blight resistance gene RB. Plant disease. 2008; 92:339–343. doi: 10.1094/PDIS-92-3-0339 30769693

41. Liu WY, Kang JH, Jeong HS, Choi HJ, Yang HB, Kim KT, et al. Combined used of bulk-segregated analysis of microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theor. Appl. Genet. 2014; 127:2503–2513. doi: 10.1007/s00122-014-2394-8 25208646

42. Fuchs M. Pyramiding resistance-conferring gene sequences in crops. Curr Opin Virol. 2017; 26:36–42. doi: 10.1016/j.coviro.2017.07.004 28755651

43. Mundt CC. Pyramiding for resistance durability: theory and practice. Phytopath. 2018; 108:792–802.

44. Segretin ME, Pais M, Franceschetti M, Chaparro-Garcia A, Bos JI, Banfield MJ, Kamoun S. Single amino acid mutations in the potato A, immune receptor R3a expand response to Phytophthora effectors. Mol Plant-Microbe Interac. 2014; 27:624–637.

45. Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotech Adv. 2015; 33:41–52.

46. Borrelli VM, Brambilla V, Rogowsky P, Marocco A, Lanubile A. The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci. 2018: 9.


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#