Left ventricular simulation of cardiac compression: Hemodynamics and regional mechanics
Autoři:
Edgar Aranda-Michel aff001; Lewis K. Waldman aff002; Dennis R. Trumble aff001
Působiště autorů:
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
aff001; Insilicomed, La Jolla, California, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224475
Souhrn
Heart failure is a global epidemic. Left ventricular assist devices provide added cardiac output for severe cases but cause infection and thromboembolism. Proposed direct cardiac compression devices eliminate blood contacting surfaces, but no group has optimized the balance between hemodynamic benefit and excessive ventricular wall strains and stresses. Here, we use left ventricular simulations to apply compressions and analyze hemodynamics as well as regional wall mechanics. This axisymmetric model corresponds with current symmetric bench prototypes. At nominal pressures of 3.1 kPa applied over the epicardial compression zone, hemodynamics improved substantially. Ejection fraction changed from 17.6% at baseline to 30.3% with compression and stroke work nearly doubled. Parametric studies were conducted by increasing and decreasing applied pressures; ejection fraction, peak pressure, and stroke work increased linearly with changes in applied compression. End-systolic volume decreased substantially. Regional mechanics analysis showed principal stress increases at the endocardium, in the middle of the compression region. Principal strains remained unchanged or increased moderately with nominal compression. However, at maximum applied compression, stresses and strains increased substantially providing potential constraints on allowable compressions. These results demonstrate a framework for analysis and optimization of cardiac compression as a prelude to biventricular simulations and subsequent animal experiments.
Klíčová slova:
Simulation and modeling – Hemodynamics – Heart failure – Compression – Mechanical stress – Cardiac ventricles – Endocardium – Epicardium
Zdroje
1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation. 2017;135: e146–e603. doi: 10.1161/CIR.0000000000000485 28122885
2. Metra M, Teerlink JR. Heart failure. Lancet (London, England). 2017;390: 1981–1995. doi: 10.1016/S0140-6736(17)31071-1
3. Heart Failure Fact Sheet|Data & Statistics|DHDSP|CDC. [cited 5 Dec 2018]. Available: https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_heart_failure.htm
4. Engelfriet PM, Hoogenveen RT, Boshuizen HC, Van Baal PHM. To die with or from heart failure: a difference that counts Is heart failure underrepresented in national mortality statistics? [cited 26 Jul 2018]. doi: 10.1093/eurjhf/hfq223
5. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet (London, England). 2011;378: 815–25. doi: 10.1016/S0140-6736(11)60814-3
6. Heart Disease and Stroke Statistics 2018 At-a-Glance. Available: https://www.heart.org/-/media/data-import/downloadables/heart-disease-and-stroke-statistics-2018—at-a-glance-ucm_498848.pdf
7. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002–2012. N Engl J Med. 2017;376: 1419–1429. doi: 10.1056/NEJMoa1610187 28402773
8. Klonoff DC. The increasing incidence of diabetes in the 21st century. J Diabetes Sci Technol. 2009;3: 1–2. doi: 10.1177/193229680900300101 20046646
9. High Blood Pressure Fact Sheet|Data & Statistics|DHDSP|CDC. [cited 5 Dec 2018]. Available: https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_bloodpressure.htm
10. Tu K, Chen Z, Lipscombe LL, Canadian Hypertension Education Program Outcomes Research Taskforce for the CHEPOR. Prevalence and incidence of hypertension from 1995 to 2005: a population-based study. CMAJ. 2008;178: 1429–35. doi: 10.1503/cmaj.071283 18490638
11. JASLOW R. CDC: 200,000 heart disease deaths could be prevented each year—CBS News. [cited 5 Dec 2018]. Available: https://www.cbsnews.com/news/cdc-200000-heart-disease-deaths-could-be-prevented-each-year/
12. Hsich EM. Matching the Market for Heart Transplantation. Circ Heart Fail. 2016;9: e002679. doi: 10.1161/CIRCHEARTFAILURE.115.002679 27072859
13. Grimm JC, Magruder JT, Kemp CD, Shah AS. Late Complications Following Continuous-Flow Left Ventricular Assist Device Implantation. Front Surg. 2015;2: 42. doi: 10.3389/fsurg.2015.00042 26347873
14. Trumble DR, Melvin DB, Byrne MT, Magovern JA. Improved mechanism for capturing muscle power for circulatory support. Artif Organs. 2005;29: 691–700. doi: 10.1111/j.1525-1594.2005.29108.x 16143010
15. Bartlett RL, Stewart NJ, Raymond J, Anstadt GL, Martin SD. Comparative study of three methods of resuscitation: closed-chest, open-chest manual, and direct mechanical ventricular assistance. Ann Emerg Med. 1984;13: 773–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/6476539 doi: 10.1016/s0196-0644(84)80433-3 6476539
16. Kung RT., Rosenberg M. Heart Booster: a pericardial support device. Ann Thorac Surg. 1999;68: 764–767. doi: 10.1016/s0003-4975(99)00524-x 10475485
17. Roche ET, Horvath MA, Wamala I, Alazmani A, Song S-E, Whyte W, et al. Soft robotic sleeve supports heart function. Sci Transl Med. 2017;9: eaaf3925. doi: 10.1126/scitranslmed.aaf3925 28100834
18. Trumble DR, McGregor WE, Kerckhoffs RCP, Waldman LK. Cardiac Assist With a Twist: Apical Torsion as a Means to Improve Failing Heart Function. J Biomech Eng. 2011;133: 101003. doi: 10.1115/1.4005169 22070328
19. Soohoo E, Waldman LK, Trumble DR. Computational Parametric Studies Investigating the Global Hemodynamic Effects of Applied Apical Torsion for Cardiac Assist. Ann Biomed Eng. 2017;45: 1434–1448. doi: 10.1007/s10439-017-1812-x 28255679
20. Carrington RAJ, Huang Y, Kawaguchi O, Yuasa T, Shirota K, Martin D, et al. Direct compression of the failing heart reestablishes maximal mechanical efficiency. Ann Thorac Surg. 2003;75: 190–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/12537215 doi: 10.1016/s0003-4975(02)04166-8 12537215
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs