The respiratory virome and exacerbations in patients with chronic obstructive pulmonary disease
Autoři:
Anneloes L. van Rijn aff001; Sander van Boheemen aff001; Igor Sidorov aff001; Ellen C. Carbo aff001; Nikos Pappas aff002; Hailiang Mei aff002; Mariet Feltkamp aff001; Marianne Aanerud aff003; Per Bakke aff004; Eric C. J. Claas aff001; Tomas M. Eagan aff003; Pieter S. Hiemstra aff005; Aloys C. M. Kroes aff001; Jutte J. C. de Vries aff001
Působiště autorů:
Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
aff001; Sequencing Analysis Support Core, Department of Medical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
aff002; Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
aff003; Department of Clinical Science, University of Bergen, Bergen, Norway
aff004; Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
aff005
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223952
Souhrn
Introduction
Exacerbations are major contributors to morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD), and respiratory bacterial and viral infections are an important trigger. However, using conventional diagnostic techniques, a causative agent is not always found. Metagenomic next-generation sequencing (mNGS) allows analysis of the complete virome, but has not yet been applied in COPD exacerbations.
Objectives
To study the respiratory virome in nasopharyngeal samples during COPD exacerbations using mNGS.
Study design
88 nasopharyngeal swabs from 63 patients from the Bergen COPD Exacerbation Study (2006–2010) were analysed by mNGS and in-house qPCR for respiratory viruses. Both DNA and RNA were sequenced simultaneously using an Illumina library preparation protocol with in-house adaptations.
Results
By mNGS, 24/88 samples tested positive. Sensitivity and specificity, as compared with PCR, were 96% and 98% for diagnostic targets (23/24 and 1093/1120, respectively). Additional viral pathogens detected by mNGS were herpes simplex virus type 1 and coronavirus OC43. A positive correlation was found between Cq value and mNGS viral normalized species reads (log value) (p = 0.002). Patients with viral pathogens had lower percentages of bacteriophages (p<0.001). No correlation was found between viral reads and clinical markers.
Conclusions
The mNGS protocol used was highly sensitive and specific for semi-quantitative detection of respiratory viruses. Excellent negative predictive value implicates the power of mNGS to exclude any pathogenic respiratory viral infectious cause in one test, with consequences for clinical decision making. Reduced abundance of bacteriophages in COPD patients with viral pathogens implicates skewing of the virome during infection, with potential consequences for the bacterial populations, during infection.
Klíčová slova:
Respiratory infections – Bacteriophages – Polymerase chain reaction – Chronic obstructive pulmonary disease – Sequence databases – Metagenomics – Rhinovirus infection
Zdroje
1. who. [cited 2018 08-10-2018]. http://www.who.int/respiratory/copd/burden/en/.
2. Aaron SD. Management and prevention of exacerbations of COPD. BMJ (Clinical research ed). 2014;349:g5237. Epub 2014/09/24. doi: 10.1136/bmj.g5237 25245156.
3. Ko FW, Chan KP, Hui DS, Goddard JR, Shaw JG, Reid DW, et al. Acute exacerbation of COPD. Respirology (Carlton, Vic). 2016;21(7):1152–65. Epub 2016/03/31. doi: 10.1111/resp.12780 27028990.
4. Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention. Lancet. 2007;370(9589):786–96. Epub 2007/09/04. doi: 10.1016/S0140-6736(07)61382-8 17765528.
5. Sapey E, Stockley RA. COPD exacerbations. 2: aetiology. Thorax. 2006;61(3):250–8. Epub 2006/03/07. doi: 10.1136/thx.2005.041822 16517585.
6. Hewitt R, Farne H, Ritchie A, Luke E, Johnston SL, Mallia P. The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Therapeutic advances in respiratory disease. 2016;10(2):158–74. Epub 2015/11/28. doi: 10.1177/1753465815618113 26611907.
7. van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6):719–24. Epub 2001/06/01. doi: 10.1038/89098 11385510.
8. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–20. Epub 2012/10/19. doi: 10.1056/NEJMoa1211721 23075143.
9. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005;102(36):12891–6. Epub 2005/08/25. doi: 10.1073/pnas.0504666102 16118271.
10. Prachayangprecha S, Schapendonk CM, Koopmans MP, Osterhaus AD, Schurch AC, Pas SD, et al. Exploring the potential of next-generation sequencing in detection of respiratory viruses. Journal of clinical microbiology. 2014;52(10):3722–30. Epub 2014/08/08. doi: 10.1128/JCM.01641-14 25100822.
11. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012;3(6). Epub 2012/11/22. doi: 10.1128/mBio.00473-12 23170002.
12. Yang J, Yang F, Ren L, Xiong Z, Wu Z, Dong J, et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. Journal of clinical microbiology. 2011;49(10):3463–9. Epub 2011/08/05. doi: 10.1128/JCM.00273-11 21813714.
13. Lewandowska DW, Schreiber PW, Schuurmans MM, Ruehe B, Zagordi O, Bayard C, et al. Metagenomic sequencing complements routine diagnostics in identifying viral pathogens in lung transplant recipients with unknown etiology of respiratory infection. PloS one. 2017;12(5):e0177340. Epub 2017/05/26. doi: 10.1371/journal.pone.0177340 28542207.
14. van Boheemen S. Metagenomic sequencing for combined detection of RNA and DNA viruses in respiratory samples from paediatric patients. bioRxiv. 2018, Dec 10. http://dx.doi.org/10.1101/492835.
15. Wang Z, Bafadhel M, Haldar K, Spivak A, Mayhew D, Miller BE, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016;47(4):1082–92. Epub 2016/02/27. doi: 10.1183/13993003.01406-2015 26917613.
16. Wang Y, Zhu N, Li Y, Lu R, Wang H, Liu G, et al. Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe acute respiratory infection in China. Clin Microbiol Infect. 2016;22(5):458.e1–9. Epub 2016/01/24. doi: 10.1016/j.cmi.2016.01.006 26802214.
17. Lysholm F, Wetterbom A, Lindau C, Darban H, Bjerkner A, Fahlander K, et al. Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing. PloS one. 2012;7(2):e30875. Epub 2012/02/23. doi: 10.1371/journal.pone.0030875 22355331.
18. Eagan TM, Ueland T, Wagner PD, Hardie JA, Mollnes TE, Damas JK, et al. Systemic inflammatory markers in COPD: results from the Bergen COPD Cohort Study. Eur Respir J. 2010;35(3):540–8. Epub 2009/08/01. doi: 10.1183/09031936.00088209 19643942.
19. Loens K, van Loon AM, Coenjaerts F, van Aarle Y, Goossens H, Wallace P, et al. Performance of different mono- and multiplex nucleic acid amplification tests on a multipathogen external quality assessment panel. Journal of clinical microbiology. 2012;50(3):977–87. Epub 2011/12/16. doi: 10.1128/JCM.00200-11 22170925.
20. van Boheemen S, van Rijn-Klink AL, Pappas N, Carbo EC, Vorderman RHP, van `t Hof PJ, et al. Metagenomic Sequencing for Combined Detection of RNA and DNA Viruses in Respiratory Samples from Paediatric Patients. 2018:492835. doi: 10.1101/492835 %J bioRxiv.
21. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome research. 2016;26(12):1721–9. Epub 2016/11/18. doi: 10.1101/gr.210641.116 27852649.
22. Vilsker M, Moosa Y, Nooij S, Fonseca V, Ghysens Y, Dumon K, et al. Genome Detective: An Automated System for Virus Identification from High-throughput sequencing data. Bioinformatics. 2018. Epub 2018/08/21. doi: 10.1093/bioinformatics/bty695 30124794.
23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology: a journal of computational molecular cell biology. 2012;19(5):455–77. Epub 2012/04/18. doi: 10.1089/cmb.2012.0021 22506599.
24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. Epub 1990/10/05. doi: 10.1016/S0022-2836(05)80360-2 2231712.
25. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. Epub 2009/05/20. doi: 10.1093/bioinformatics/btp324 19451168.
26. Akobeng AK. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta paediatrica (Oslo, Norway: 1992). 2007;96(5):644–7. Epub 2007/03/23. doi: 10.1111/j.1651-2227.2006.00178.x 17376185.
27. Elbehery AHA, Feichtmayer J, Singh D, Griebler C, Deng L. The Human Virome Protein Cluster Database (HVPC): A Human Viral Metagenomic Database for Diversity and Function Annotation. Front Microbiol. 2018;9:1110. Epub 2018/06/14. doi: 10.3389/fmicb.2018.01110 29896176.
28. Arden KE, McErlean P, Nissen MD, Sloots TP, Mackay IM. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. Journal of medical virology. 2006;78(9):1232–40. Epub 2006/07/19. doi: 10.1002/jmv.20689 16847968.
29. Lamson D, Renwick N, Kapoor V, Liu Z, Palacios G, Ju J, et al. MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004–2005. The Journal of infectious diseases. 2006;194(10):1398–402. Epub 2006/10/21. doi: 10.1086/508551 17054069.
30. Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46(1):51–5. Epub 2013/11/19. doi: 10.1038/ng.2830 24241537.
31. Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112(17):5485–90. Epub 2015/04/08. doi: 10.1073/pnas.1421178112 25848009.
32. Kanazawa J, Masuko H, Yatagai Y, Sakamoto T, Yamada H, Kaneko Y, et al. Genetic association of the functional CDHR3 genotype with early-onset adult asthma in Japanese populations. Allergol Int. 2017;66(4):563–7. Epub 2017/03/21. doi: 10.1016/j.alit.2017.02.012 28318885.
33. Romero-Espinoza JA, Moreno-Valencia Y, Coronel-Tellez RH, Castillejos-Lopez M, Hernandez A, Dominguez A, et al. Virome and bacteriome characterization of children with pneumonia and asthma in Mexico City during winter seasons 2014 and 2015. PloS one. 2018;13(2):e0192878. Epub 2018/02/16. doi: 10.1371/journal.pone.0192878 29447223.
34. Lau SK, Yip CC, Lin AW, Lee RA, So LY, Lau YL, et al. Clinical and molecular epidemiology of human rhinovirus C in children and adults in Hong Kong reveals a possible distinct human rhinovirus C subgroup. The Journal of infectious diseases. 2009;200(7):1096–103. doi: 10.1086/605697 19708791.
35. McErlean P, Shackelton LA, Lambert SB, Nissen MD, Sloots TP, Mackay IM. Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2007;39(2):67–75. Epub 2007/05/08. doi: 10.1016/j.jcv.2007.03.012 17482871.
36. El Saleeby CM, Bush AJ, Harrison LM, Aitken JA, Devincenzo JP. Respiratory syncytial virus load, viral dynamics, and disease severity in previously healthy naturally infected children. The Journal of infectious diseases. 2011;204(7):996–1002. Epub 2011/09/02. doi: 10.1093/infdis/jir494 21881113.
37. Houben ML, Coenjaerts FE, Rossen JW, Belderbos ME, Hofland RW, Kimpen JL, et al. Disease severity and viral load are correlated in infants with primary respiratory syncytial virus infection in the community. Journal of medical virology. 2010;82(7):1266–71. Epub 2010/06/01. doi: 10.1002/jmv.21771 20513094.
38. Zhao B, Yu X, Wang C, Teng Z, Wang C, Shen J, et al. High human bocavirus viral load is associated with disease severity in children under five years of age. PloS one. 2013;8(4):e62318. Epub 2013/05/03. doi: 10.1371/journal.pone.0062318 23638038.
39. Christensen A, Nordbo SA, Krokstad S, Rognlien AG, Dollner H. Human bocavirus in children: mono-detection, high viral load and viraemia are associated with respiratory tract infection. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2010;49(3):158–62. Epub 2010/09/14. doi: 10.1016/j.jcv.2010.07.016 20833582.
40. Gregory AC, Sullivan MB, Segal LN, Keller BC. Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome. Respiratory research. 2018;19(1):174. Epub 2018/09/14. doi: 10.1186/s12931-018-0878-9 30208886.
41. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–60. Epub 2015/01/27. doi: 10.1016/j.cell.2015.01.002 25619688.
42. D’Anna SE, Balbi B, Cappello F, Carone M, Di Stefano A. Bacterial-viral load and the immune response in stable and exacerbated COPD: significance and therapeutic prospects. Int J Chron Obstruct Pulmon Dis. 2016;11:445–53. Epub 2016/04/05. doi: 10.2147/COPD.S93398 27042037.
43. Molyneaux PL, Mallia P, Cox MJ, Footitt J, Willis-Owen SA, Homola D, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(10):1224–31. Epub 2013/09/03. doi: 10.1164/rccm.201302-0341OC 23992479.
44. Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunology. 2016;10:299. doi: 10.1038/mi.2016.108 27966551
45. Ling Z, Liu X, Luo Y, Yuan L, Wang Y, Xiang C, et al. Pyrosequencing Analysis of the Human Microbiota of Healthy Chinese Undergraduates 2013. 390 p.
46. Bedarida S, Dussol B, Signoli M, Biagini P. Analysis of Anelloviridae sequences characterized from serial human and animal biological samples. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2017;53:89–93. Epub 2017/05/26. doi: 10.1016/j.meegid.2017.05.017 28536071.
47. Thorburn F, Bennett S, Modha S, Murdoch D, Gunson R, Murcia PR. The use of next generation sequencing in the diagnosis and typing of respiratory infections. J Clin Virol. 2015;69:96–100. Epub 2015/07/26. doi: 10.1016/j.jcv.2015.06.082 26209388.
48. Graf EH, Simmon KE, Tardif KD, Hymas W, Flygare S, Eilbeck K, et al. Unbiased Detection of Respiratory Viruses by Use of RNA Sequencing-Based Metagenomics: a Systematic Comparison to a Commercial PCR Panel. J Clin Microbiol. 2016;54(4):1000–7. Epub 2016/01/29. doi: 10.1128/JCM.03060-15 26818672.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis