#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Partitioning the risk of tuberculosis transmission in household contact studies


Autoři: Avery I. McIntosh aff001;  Helen E. Jenkins aff001;  C. Robert Horsburgh aff001;  Edward C. Jones-López aff003;  Christopher C. Whalen aff004;  Mary Gaeddert aff003;  Patricia Marques-Rodrigues aff005;  Jerrold J. Ellner aff003;  Reynaldo Dietze aff005;  Laura F. White aff001
Působiště autorů: Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America aff001;  Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States of America aff002;  Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America aff003;  Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia, United States of America aff004;  Núcleo de Doenças Infecciosas, Vitória, Brazil aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223966

Souhrn

Household contact studies of tuberculosis (TB) are a common way to study disease transmission dynamics. However these studies lack a mechanism for accounting for community transmission, which is known to be significant, particularly in high burden settings. We illustrate a statistical approach for estimating both the correlates with transmission of TB in a household setting and the probability of community transmission using a modified Bayesian mixed-effects model. This is applied to two household contact studies in Vitória, Brazil from 2008–2013 and Kampala, Uganda from 1995–2004 that enrolled households with an individual that was recently diagnosed with pulmonary TB. We estimate the probability of community transmission to be higher in Uganda (ranging from 0.21 to 0.69, depending on HHC age and HIV status of the index case) than in Brazil (ranging from 0.13 for young children to 0.50 in adults). These estimates are consistent with a higher overall burden of disease in Uganda compared to Brazil. Our method also estimates an increasing risk of community-acquired TB with age of the household contact, consistent with existing literature. This approach is a useful way to integrate the role of the community in understanding TB disease transmission dynamics in household contact studies.

Klíčová slova:

Tuberculosis – Tuberculosis diagnosis and management – Age groups – Brazil – Medical risk factors – Uganda – Restriction fragment length polymorphism analysis


Zdroje

1. Bennett DE, Onorato IM, Ellis BA, Crawford JT, Schable B, Byers R, et al. DNA fingerprinting of Mycobacterium tuberculosis isolates from epidemiologically linked case pairs. Emerg Infect Dis [Internet]. 2002 Nov [cited 2017 Jun 20];8(11):1224–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12453346 doi: 10.3201/eid0811.020420 12453346

2. Verver S, Warren RM, Munch Z, Richardson M, van der Spuy GD, Borgdorff MW, et al. Proportion of tuberculosis transmission that takes place in households in a high-incidence area. Lancet [Internet]. 2004 Jan [cited 2017 Jun 20];363(9404):212–4. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673603153329 doi: 10.1016/S0140-6736(03)15332-9 14738796

3. Cohen T, Murray M, Abubakar I, Zhang Z, Sloutsky A, Arteaga F, et al. Multiple Introductions of Multidrug-Resistant Tuberculosis into Households, Lima, Peru. Emerg Infect Dis [Internet]. 2011 [cited 2017 Jun 20];17(6). Available from: https://wwwnc.cdc.gov/eid/article/17/6/pdfs/10-1471.pdf

4. Buu T, van Soolingen D, Huyen M, Lan N, Quy H, Tiemersma E, et al. Tuberculosis Acquired Outside of Households, Rural Vietnam. Emerg Infect Dis [Internet]. 2010 [cited 2017 Jun 20];16:1466–8. Available from: https://wwwnc.cdc.gov/eid/article/16/9/pdfs/10-0281.pdf doi: 10.3201/eid1609.100281 20735935

5. Glynn JR, Guerra-Assuncao J, Houben RMGJ, Sichali L, Mzembe T, Mwaungulu LK, et al. Whole Genome Sequencing Shows a Low Proportion of Tuberculosis Disease Is Attributable to Known Close Contacts in Rural Malawi. Cardona P-J, editor. PLoS One [Internet]. 2015 Jul 16 [cited 2017 Jun 20];10(7):e0132840. Available from: doi: 10.1371/journal.pone.0132840 26181760

6. McIntosh AI, Doros G, Jones-López EC, Gaeddert M, Jenkins HE, Marques-Rodrigues P, et al. Extensions to Bayesian generalized linear mixed effects models for household tuberculosis transmission. Stat Med [Internet]. 2017 Mar 29 [cited 2017 Apr 20];36:2522–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28370491 doi: 10.1002/sim.7303 28370491

7. Martinez L, Shen Y, Mupere E, Kizza A, Hill PC, Whalen CC. Transmission of Mycobacterium Tuberculosis in Households and the Community: A Systematic Review and Meta-Analysis. Am J Epidemiol. 2017;185(12):1327–39. doi: 10.1093/aje/kwx025 28982226

8. WHO. Global Tuberculosis Report 2017 [Internet]. 2017. Available from: http://www.who.int/tb/publications/global_report/en/

9. Bennett DE, Courval JM, Onorato I, Agerton T, Daugherty J, Lambert L, et al. Supplement: Prevalence of tuberculosis infection in the United States population. 2008;1999–2000.

10. Wood R, Liang H, Wu H, Middelkoop K, Oni T, Rangaka MX, et al. Changing prevalence of tuberculosis infection with increasing age in high-burden townships in South Africa. Int J Tuberc Lung Dis [Internet]. 2010 [cited 2017 Jun 20];14(4):406–12. Available from: http://www.ingentaconnect.com/content/iuatld/ijtld/2010/00000014/00000004/art00007 20202297

11. Zhang X, Jia H, Liu F, Pan L, Xing A, Gu S, et al. Prevalence and Risk Factors for Latent Tuberculosis Infection among Health Care Workers in China: A Cross-Sectional Study. Mokrousov I, editor. PLoS One [Internet]. 2013 Jun 18 [cited 2017 Jun 20];8(6):e66412. Available from: doi: 10.1371/journal.pone.0066412 23823871

12. Davies PD. Tuberculosis in the elderly: an international perspective. Clin Geriatr. 1997;15–26.

13. Ribeiro-Rodrigues R, Kim S, Coelho Da Silva FD, Uzelac A, Collins L, Palaci M, et al. Discordance of tuberculin skin test and interferon gamma release assay in recently exposed household contacts of pulmonary TB cases in Brazil. PLoS One. 2014;9(5).

14. Jones-López EC, Kim S, Fregona G, Marques-Rodrigues P, Hadad DJ, Molina LPD, et al. Importance of Cough and M. tuberculosis Strain Type as Risks for Increased Transmission within Households. DeRiemer K, editor. PLoS One [Internet]. 2014 Jul 2 [cited 2016 Apr 14];9(7):e100984. Available from: doi: 10.1371/journal.pone.0100984 24988000

15. Whalen CC, Zalwango S, Chiunda A, Malone L, Eisenach K, Joloba M, et al. Secondary attack rate of tuberculosis in urban households in kampala, uganda. PLoS One. 2011;6(2).

16. Salgame P, Geadas C, Collins L, Jones-L Opez E, Ellner JJ. Latent tuberculosis infection e Revisiting and revising concepts. Tuberculosis [Internet]. 2015 [cited 2017 Jun 29];95:373–84. Available from: http://ac.els-cdn.com/S1472979214206792/1-s2.0-S1472979214206792-main.pdf?_tid=5eaba9a8-5cef-11e7-8b16-00000aab0f02&acdnat=1498757062_ae55b90f313167f46c038c8497b286c2 doi: 10.1016/j.tube.2015.04.003 26038289

17. Plummer M. DSC 2003 Working Papers JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. [cited 2018 Jul 18]; Available from: http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

18. Classen CN, Warren R, Richardson M, Hauman JH, Gie RP, Ellis JH, et al. Impact of social interactions in the community on the transmission of tuberculosis in a high incidence area. Thorax [Internet]. 1999 Feb 1 [cited 2018 Aug 3];54(2):136–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10325918 doi: 10.1136/thx.54.2.136 10325918

19. Davidson JA, Thomas HL, Maguire H, Brown T, Burkitt A, Macdonald N, et al. Understanding Tuberculosis Transmission in the United Kingdom: Findings From 6 Years of Mycobacterial Interspersed Repetitive Unit–Variable Number Tandem Repeats Strain Typing, 2010–2015. Am J Epidemiol [Internet]. 2018 Jun 7 [cited 2018 Aug 3]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29878041

20. Hamblion EL, Le Menach A, Anderson LF, Lalor MK, Brown T, Abubakar I, et al. Recent TB transmission, clustering and predictors of large clusters in London, 2010–2012: results from first 3 years of universal MIRU-VNTR strain typing. Thorax [Internet]. 2016 Aug 1 [cited 2018 Aug 3];71(8):749–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27417280 doi: 10.1136/thoraxjnl-2014-206608 27417280

21. Guthrie JL, Delli Pizzi A, Roth D, Kong C, Jorgensen D, Rodrigues M, et al. Genotyping and Whole-Genome Sequencing to Identify Tuberculosis Transmission to Pediatric Patients in British Columbia, Canada, 2005–2014. J Infect Dis [Internet]. 2018 May 11 [cited 2018 Aug 3]; Available from: https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiy278/4995040

22. Smith KC. Tuberculosis in children. Curr Probl Pediatr [Internet]. 2001 Jan 1 [cited 2018 Aug 3];31(1):5–30. Available from: https://www-sciencedirect-com.ezproxy.bu.edu/science/article/pii/S1538544201700405

23. Egere U, Togun T, Sillah A, Mendy F, Otu J, Hoelscher M, et al. Identifying children with tuberculosis among household contacts in The Gambia. Int J Tuberc Lung Dis [Internet]. 2017 Jan 1 [cited 2018 Aug 3];21(1):46–52. Available from: http://www.ingentaconnect.com/content/10.5588/ijtld.16.0289 28157464

24. Marais BJ, Hesseling AC, Schaaf HS, Gie RP, van Helden PD, Warren RM. Mycobacterium tuberculosis transmission is not related to household genotype in a setting of high endemicity. J Clin Microbiol [Internet]. 2009 May 1 [cited 2018 Aug 3];47(5):1338–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19261801 doi: 10.1128/JCM.02490-08 19261801

25. Nabyonga L, Kateete DP, Katabazi FA, Odong PR, Whalen CC, Dickman KR, et al. Determination of circulating Mycobacterium tuberculosis strains and transmission patterns among pulmonary TB patients in Kawempe municipality, Uganda, using MIRU-VNTR. BMC Res Notes [Internet]. 2011 Dec 11 [cited 2019 Sep 11];4(1):280. Available from: https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-4-280

26. Cruciani M, Malena M, Bosco O, Gatti G, Serpelloni G. The impact of human immunodeficiency virus type 1 on infectiousness of tuberculosis: a meta-analysis. Clin Infect Dis [Internet]. 2001 Dec 1 [cited 2018 Aug 3];33(11):1922–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11692305 doi: 10.1086/324352 11692305

27. Middelkoop K, Mathema B, Myer L, Shashkina E, Whitelaw A, Kaplan G, et al. Transmission of Tuberculosis in a South African Community With a High Prevalence of HIV Infection. J Infect Dis [Internet]. 2015 Jan 1 [cited 2018 Jul 31];211(1):53–61. Available from: https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiu403 25053739

28. Huang C-C, Tchetgen ET, Becerra MC, Cohen T, Hughes KC, Zhang Z, et al. The Effect of HIV-Related Immunosuppression on the Risk of Tuberculosis Transmission to Household Contacts. Clin Infect Dis [Internet]. 2014 Mar 15 [cited 2018 Jul 31];58(6):765–74. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/cit948 24368620


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#