Signaling impacts of GMO labeling on fruit and vegetable demand
Autoři:
D. Adeline Yeh aff001; Miguel I. Gómez aff001; Harry M. Kaiser aff001
Působiště autorů:
Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223910
Souhrn
Food labels may have both informational and signaling influences on consumer demand. We conduct a choice experiment with over 1,300 subjects to examine the signaling effect of the food product labels on consumer demand for other competing products in the market. Specifically, we focus on the genetically modified (GM) text labeling for fresh produce (strawberries, apples, and potatoes) in the United States. Contrary to some previous studies, our results indicate that the absence-claim label (Not-GM) does not have a negative impact on the demand for related conventional products. Instead, we find that consumer demand for unlabeled products is significantly enhanced with the introduction of presence-claimed GM labels. Our results contribute to the ongoing discussion of the enactment of mandatory labeling for GM foods by the federal U.S. government. Our results suggest that, in the case of direct text disclosure labels, consumers may no longer differentiate between unlabeled products and Not-GM-labeled products after the mandatory GM labeling law is in effect.
Klíčová slova:
Surveys – Milk – Genetically modified organisms – Census – Food consumption – Signal processing – Experimental design – Genetically modified foods
Zdroje
1. Pino D. Why I’m Voting Yes on Prop 37: Label Genetically Modified Foods. Huffington Post [Internet]. 2012 Oct 29 [cited 2018 Jan 15]; Available from: https://www.huffingtonpost.com/darya-pino/prop-37-genetically-modified-food_b_2040371.html
2. Huffman WE, McCluskey JJ. The Economics of Labeling GM Foods. AgBioForum. 2014 Dec 23;17(2):156–60.
3. Messer KD, Costanigro M, Kaiser HM. Labeling Food Processes: The Good, the Bad and the Ugly. Appl Econ Perspect Policy. 2017 Sep 1;39(3):407–27.
4. Watson KW. “Dolphin Safe” Labels On Canned Tuna Are A Fraud. Forbes [Internet]. 2015 Apr 29 [cited 2018 Sep 4]; Available from: https://www.forbes.com/sites/realspin/2015/04/29/dolphin-safe-labels-on-canned-tuna-are-a-fraud/
5. Vilsack T. Stop the Food Label Fear-Mongering [Internet]. US News & World Report. 2018 [cited 2018 Jul 15]. Available from: https://www.usnews.com/opinion/articles/2018-01-30/stop-the-food-label-fear-mongering
6. National Academies of Sciences. Genetically Engineered Crops: Experiences and Prospects. Washington, DC: The National Academies Press; 2016.
7. Lusk JL, McFadden BR, Wilson N. Do consumers care how a genetically engineered food was created or who created it? Food Policy. 2018 Jul 1;78:81–90.
8. Lusk JL, Jamal M, Kurlander L, Roucan M, Taulman L. A Meta-Analysis of Genetically Modified Food Valuation Studies. J Agric Resour Econ. 2005;30(1):28–44.
9. Bernard JC, Zhang C, Gifford K. An Experimental Investigation of Consumer Willingness to Pay for Non-GM Foods When an Organic Option Is Present. Agric Resour Econ Rev. 2006 Oct;35(2):374–85.
10. Dannenberg A. The dispersion and development of consumer preferences for genetically modified food—A meta-analysis. Ecol Econ. 2009 Jun 15;68(8):2182–92.
11. Frewer LJ, van der Lans IA, Fischer ARH, Reinders MJ, Menozzi D, Zhang X, et al. Public perceptions of agri-food applications of genetic modification–A systematic review and meta-analysis. Trends Food Sci Technol. 2013 Apr 1;30(2):142–52.
12. Fernandez-Cornejo J, Wechsler S, Livingston M, Mitchell L. Genetically Engineered Crops in the United States [Internet]. Washington, DC: Economic Research Service, United States Department of Agriculture; 2014 Feb [cited 2018 Apr 14]. Report No.: ID 2503388. Available from: https://papers.ssrn.com/abstract=2503388
13. Hess S, Lagerkvist CJ, Redekop W, Pakseresht A. Consumers’ evaluation of biotechnologically modified food products: new evidence from a meta-survey. Eur Rev Agric Econ. 2016 Dec 7;43(5):703–36.
14. United States Department of Agriculture. National Bioengineered Food Disclosure Standard [Internet]. 2018 [cited 2019 Jan 11]. Available from: https://www.ams.usda.gov/rules-regulations/be
15. McFadden BR, Lusk JL. Effects of the National Bioengineered Food Disclosure Standard: Willingness To Pay for Labels that Communicate the Presence or Absence of Genetic Modification. Appl Econ Perspect Policy. 2018 Jun 1;40(2):259–75.
16. Golan E, Kuchler F, Mitchell L, Greene C, Jessup A. Economics of Food Labeling. J Consum Policy. 2001 Jun 1;24(2):117–84.
17. Oh J, Ezezika OC. To label or not to label: balancing the risks, benefits and costs of mandatory labelling of GM food in Africa. Agric Food Secur. 2014 Apr 23;3:8.
18. Hemphill TA, Syagnik B. Genetically Modified Organisms and the U.S. Retail Food Labeling Controversy: Consumer Perceptions, Regulation, and Public Policy. Bus Soc Rev. 2015 Sep 2;120(3):435–64.
19. Caswell JA, Padberg DI. Toward a More Comprehensive Theory of Food Labels. Am J Agric Econ. 1992 May;74(2):460.
20. Costanigro M, Lusk JL. The signaling effect of mandatory labels on genetically engineered food. Food Policy. 2014 Dec 1;49:259–67.
21. Bansal S, Chakravarty S, Ramaswami B. The informational and signaling impacts of labels: experimental evidence from India on GM foods. Environ Dev Econ. 2013 Dec;18(6):701–22.
22. Liaukonyte J, Streletskaya NA, Kaiser HM. Noisy Information Signals and Endogenous Preferences for Labeled Attributes. J Agric Resour Econ. 2015 May;40(2):179–202.
23. Lee WJ, Shimizu M, Kniffin KM, Wansink B. You taste what you see: Do organic labels bias taste perceptions? Food Qual Prefer. 2013 Jul 1;29(1):33–9.
24. Hughner RS, McDonagh P, Prothero A, Shultz CJ, Stanton J. Who are organic food consumers? A compilation and review of why people purchase organic food. J Consum Behav. 2007 Mar 1;6(2–3):94–110.
25. Larceneux F, Benoit-Moreau F, Renaudin V. Why Might Organic Labels Fail to Influence Consumer Choices? Marginal Labelling and Brand Equity Effects. J Consum Policy. 2012 Mar 1;35(1):85–104.
26. Vega-Zamora M, Torres-Ruiz FJ, Murgado-Armenteros EM, Parras-Rosa M. Organic as a Heuristic Cue: What Spanish Consumers Mean by Organic Foods. Psychol Mark. 2014 May;31(5):349–59.
27. Schuldt JP, Muller D, Schwarz N. The “Fair Trade” Effect: Health Halos From Social Ethics Claims. Soc Psychol Personal Sci. 2012 Sep 1;3(5):581–9.
28. Lusk JL, Schroeder TC, Tonsor GT. Distinguishing beliefs from preferences in food choice. Eur Rev Agric Econ. 2014 Sep 1;41(4):627–55.
29. McFadden B. ‘Gluten-free water’ shows absurdity of trend in labeling what’s absent. The Conversation [Internet]. 2017 Aug 28 [cited 2018 Jul 8]; Available from: http://theconversation.com/gluten-free-water-shows-absurdity-of-trend-in-labeling-whats-absent-80657
30. Rozin P. Technological Stigma: Some Perspectives from the Study of Contagion. In: Risk, Media and Stigma: Understanding Public Challenges to Modern Science and Technology. 1st Edition. Earthscan; 2001.
31. Kanter C, Messer KD, Kaiser HM. Does Production Labeling Stigmatize Conventional Milk? Am J Agric Econ. 2009 Nov 1;91(4):1097–109.
32. The Non-GMO Project. Product Verification for the Non-GMO Project [Internet]. 2019. Available from: https://www.nongmoproject.org/product-verification/
33. United States Department of Agriculture (USDA). Organic Certification and Accreditation [Internet]. 2019. Available from: https://www.ams.usda.gov/services/organic-certification
34. McFadden BR, Malone THow will mandatory labeling of genetically modified food nudge consumer decision-making? J Behav Exp Econ. 2018 Dec 1;77:186–94.
35. Lusk JL, Rozan A. Public Policy and Endogenous Beliefs: The Case of Genetically Modified Food. J Agric Resour Econ. 2008;33(2):270–89.
36. Kolodinsky J, Lusk JL. Mandatory labels can improve attitudes toward genetically engineered food. Sci Adv. 2018 Jun 1;4(6):eaaq1413. doi: 10.1126/sciadv.aaq1413 29963622
37. Liaukonyte J, Streletskaya NA, Kaiser HM, Rickard BJ. Consumer Response to “Contains” and “Free of” Labeling: Evidence from Lab Experiments. Appl Econ Perspect Policy. 2013 Sep 1;35(3):476–507.
38. Carlsson F, Frykblom P, Lagerkvist CJUsing cheap talk as a test of validity in choice experiments. Econ Lett. 2005 Nov 1;89(2):147–52.
39. Loomis J. What’s to Know About Hypothetical Bias in Stated Preference Valuation Studies? J Econ Surv. 2011 Apr 1;25(2):363–70.
40. de-Magistris T, Gracia A, Nayga RM. On the Use of Honesty Priming Tasks to Mitigate Hypothetical Bias in Choice Experiments. Am J Agric Econ. 2013 Oct 1;95(5):1136–54.
41. Train KE. Discrete Choice Methods with Simulation. Cambridge University Press; 2009. 399 p.
42. Kahneman D, Tversky A. Prospect Theory: An Analysis of Decision under Risk. Econometrica. 1979;47(2):263–91.
43. Carlsson F, Mørkbak MR, Olsen SB. The first time is the hardest: A test of ordering effects in choice experiments. J Choice Model. 2012 Jan 1;5(2):19–37.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis