#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

MitoToxy assay: A novel cell-based method for the assessment of metabolic toxicity in a multiwell plate format using a lactate FRET nanosensor, Laconic


Autoři: Yasna Contreras-Baeza aff001;  Sebastián Ceballo aff001;  Robinson Arce-Molina aff001;  Pamela Y. Sandoval aff001;  Karin Alegría aff001;  Luis Felipe Barros aff001;  Alejandro San Martín aff001
Působiště autorů: Centro de Estudios Científicos (CECs), Valdivia, Chile aff001;  Universidad Austral de Chile (UACh), Valdivia, Chile aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0224527

Souhrn

Mitochondrial toxicity is a primary source of pre-clinical drug attrition, black box warning and post-market drug withdrawal. Methods that detect mitochondrial toxicity as early as possible during the drug development process are required. Here we introduce a new method for detecting mitochondrial toxicity based on MDA-MB-231 cells stably expressing the genetically encoded FRET lactate indicator, Laconic. The method takes advantage of the high cytosolic lactate accumulation observed during mitochondrial stress, regardless of the specific toxicity mechanism, explained by compensatory glycolytic activation. Using a standard multi-well plate reader, dose-response curve experiments allowed the sensitivity of the methodology to detect metabolic toxicity induced by classical mitochondrial toxicants. Suitability for high-throughput screening applications was evaluated resulting in a Z’-factor > 0.5 and CV% < 20 inter-assay variability. A pilot screening allowed sensitive detection of commercial drugs that were previously withdrawn from the market due to liver/cardiac toxicity issues, such as camptothecin, ciglitazone, troglitazone, rosiglitazone, and terfenadine, in ten minutes. We envisage that the availability of this technology, based on a fluorescent genetically encoded indicator, will allow direct assessment of mitochondrial metabolism, and will make the early detection of mitochondrial toxicity in the drug development process possible, saving time and resources.

Klíčová slova:

Drug metabolism – Drug research and development – Mitochondria – Toxicity – Fluorescence resonance energy transfer – Cell metabolism – Astrocytes – Azides


Zdroje

1. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475–86. doi: 10.1038/nrd4609 26091267.

2. Arrowsmith J. Trial watch: Phase II failures: 2008–2010. Nat Rev Drug Discov. 2011;10(5):328–9. doi: 10.1038/nrd3439 21532551.

3. Arrowsmith J. Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov. 2011;10(2):87. doi: 10.1038/nrd3375 21283095.

4. Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov. 2013;12(8):569. doi: 10.1038/nrd4090 23903212.

5. Shah RR. Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics. 2006;7(6):889–908. doi: 10.2217/14622416.7.6.889 16981848.

6. McNaughton R, Huet G, Shakir S. An investigation into drug products withdrawn from the EU market between 2002 and 2011 for safety reasons and the evidence used to support the decision-making. BMJ Open. 2014;4(1):e004221. doi: 10.1136/bmjopen-2013-004221 24435895; PubMed Central PMCID: PMC3902466.

7. Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 2016;14:10. doi: 10.1186/s12916-016-0553-2 26843061; PubMed Central PMCID: PMC4740994.

8. Solotke MT, Dhruva SS, Downing NS, Shah ND, Ross JS. New and incremental FDA black box warnings from 2008 to 2015. Expert Opin Drug Saf. 2018;17(2):117–23. doi: 10.1080/14740338.2018.1415323 29215916; PubMed Central PMCID: PMC6013049.

9. Dykens JA, Will Y. The significance of mitochondrial toxicity testing in drug development. Drug Discov Today. 2007;12(17–18):777–85. doi: 10.1016/j.drudis.2007.07.013 17826691.

10. Nadanaciva S, Will Y. New insights in drug-induced mitochondrial toxicity. Curr Pharm Des. 2011;17(20):2100–12. doi: 10.2174/138161211796904795 21718246.

11. Vuda M, Kamath A. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion. 2016;31:63–74. doi: 10.1016/j.mito.2016.10.005 27771494.

12. Wallace KB. Multiple Targets for Drug-Induced Mitochondrial Toxicity. Curr Med Chem. 2015;22(20):2488–92. doi: 10.2174/0929867322666150514095424 25973981.

13. Wallace KB. Mitochondrial off targets of drug therapy. Trends Pharmacol Sci. 2008;29(7):361–6. doi: 10.1016/j.tips.2008.04.001 18501972.

14. Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, Attene-Ramos M, et al. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun. 2016;7:10425. doi: 10.1038/ncomms10425 26811972; PubMed Central PMCID: PMC4777217.

15. San Martin A, Sotelo-Hitschfeld T, Lerchundi R, Fernandez-Moncada I, Ceballo S, Valdebenito R, et al. Single-cell imaging tools for brain energy metabolism: a review. Neurophotonics. 2014;1(1):011004. doi: 10.1117/1.NPh.1.1.011004 26157964; PubMed Central PMCID: PMC4478754.

16. Okumoto S, Jones A, Frommer WB. Quantitative imaging with fluorescent biosensors. Annu Rev Plant Biol. 2012;63:663–706. doi: 10.1146/annurev-arplant-042110-103745 22404462.

17. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997;388(6645):882–7. doi: 10.1038/42264 9278050.

18. Fernandez-Moncada I, Ruminot I, Robles-Maldonado D, Alegria K, Deitmer JW, Barros LF. Neuronal control of astrocytic respiration through a variant of the Crabtree effect. Proc Natl Acad Sci U S A. 2018;115(7):1623–8. doi: 10.1073/pnas.1716469115 29378955; PubMed Central PMCID: PMC5816174.

19. Lerchundi R, Fernandez-Moncada I, Contreras-Baeza Y, Sotelo-Hitschfeld T, Machler P, Wyss MT, et al. NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting. Proc Natl Acad Sci U S A. 2015;112(35):11090–5. doi: 10.1073/pnas.1508259112 26286989; PubMed Central PMCID: PMC4568276.

20. Machler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A, et al. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons. Cell Metab. 2016;23(1):94–102. doi: 10.1016/j.cmet.2015.10.010 26698914.

21. San Martin A, Arce-Molina R, Galaz A, Perez-Guerra G, Barros LF. Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism. J Biol Chem. 2017;292(22):9432–8. doi: 10.1074/jbc.M117.777243 28341740; PubMed Central PMCID: PMC5454122.

22. Valdebenito R, Ruminot I, Garrido-Gerter P, Fernandez-Moncada I, Forero-Quintero L, Alegria K, et al. Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate. J Cereb Blood Flow Metab. 2016;36(10):1813–22. doi: 10.1177/0271678X15613955 26661221; PubMed Central PMCID: PMC5076786.

23. Baeza-Lehnert F, Saab AS, Gutierrez R, Larenas V, Diaz E, Horn M, et al. Non-Canonical Control of Neuronal Energy Status by the Na(+) Pump. Cell Metab. 2018. doi: 10.1016/j.cmet.2018.11.005 30527744.

24. Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y, et al. SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Cell Metab. 2015;21(5):777–89. doi: 10.1016/j.cmet.2015.04.009 25955212; PubMed Central PMCID: PMC4427571.

25. Mendelsohn BA, Bennett NK, Darch MA, Yu K, Nguyen MK, Pucciarelli D, et al. A high-throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure. PLoS Biol. 2018;16(8):e2004624. doi: 10.1371/journal.pbio.2004624 30148842.

26. Schaaf TM, Li A, Grant BD, Peterson K, Yuen S, Bawaskar P, et al. Red-Shifted FRET Biosensors for High-Throughput Fluorescence Lifetime Screening. Biosensors (Basel). 2018;8(4). doi: 10.3390/bios8040099 30352972.

27. Schaaf TM, Peterson KC, Grant BD, Bawaskar P, Yuen S, Li J, et al. High-Throughput Spectral and Lifetime-Based FRET Screening in Living Cells to Identify Small-Molecule Effectors of SERCA. SLAS Discov. 2017;22(3):262–73. doi: 10.1177/1087057116680151 27899691; PubMed Central PMCID: PMC5323330.

28. Zhao Z, Rajagopalan R, Zweifach A. A Novel Multiple-Read Screen for Metabolically Active Compounds Based on a Genetically Encoded FRET Sensor for ATP. SLAS Discov. 2018;23(9):907–18. doi: 10.1177/2472555218780636 29898642.

29. San Martin A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One. 2013;8(2):e57712. doi: 10.1371/journal.pone.0057712 23469056; PubMed Central PMCID: PMC3582500.

30. San Martin A, Ceballo S, Baeza-Lehnert F, Lerchundi R, Valdebenito R, Contreras-Baeza Y, et al. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLoS One. 2014;9(1):e85780. doi: 10.1371/journal.pone.0085780 24465702; PubMed Central PMCID: PMC3897509.

31. Bittner CX, Loaiza A, Ruminot I, Larenas V, Sotelo-Hitschfeld T, Gutierrez R, et al. High resolution measurement of the glycolytic rate. Front Neuroenergetics. 2010;2. doi: 10.3389/fnene.2010.00026 20890447; PubMed Central PMCID: PMC2947927.

32. Zhang JH, Chung TD, Oldenburg KR. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 1999;4(2):67–73. doi: 10.1177/108705719900400206 10838414.

33. Wills LP, Beeson GC, Hoover DB, Schnellmann RG, Beeson CC. Assessment of ToxCast Phase II for Mitochondrial Liabilities Using a High-Throughput Respirometric Assay. Toxicol Sci. 2015;146(2):226–34. doi: 10.1093/toxsci/kfv085 25926417; PubMed Central PMCID: PMC5009421.

34. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. doi: 10.1126/science.1160809 19460998; PubMed Central PMCID: PMC2849637.

35. Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci. 2007;97(2):539–47. Epub 2007/03/16. doi: 10.1093/toxsci/kfm052 17361016.

36. Andreux PA, Mouchiroud L, Wang X, Jovaisaite V, Mottis A, Bichet S, et al. A method to identify and validate mitochondrial modulators using mammalian cells and the worm C. elegans. Sci Rep. 2014;4:5285. doi: 10.1038/srep05285 24923838; PubMed Central PMCID: PMC4055904.

37. Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem. 2005;280(29):27213–21. doi: 10.1074/jbc.M411950200 15917240.

38. Baenke F, Dubuis S, Brault C, Weigelt B, Dankworth B, Griffiths B, et al. Functional screening identifies MCT4 as a key regulator of breast cancer cell metabolism and survival. J Pathol. 2015;237(2):152–65. doi: 10.1002/path.4562 25965974.

39. Hernandez AV, Usmani A, Rajamanickam A, Moheet A. Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. Am J Cardiovasc Drugs. 2011;11(2):115–28. doi: 10.2165/11587580-000000000-00000 21294599.

40. O'Leary J, Muggia FM. Camptothecins: a review of their development and schedules of administration. Eur J Cancer. 1998;34(10):1500–8. doi: 10.1016/s0959-8049(98)00229-9 9893620.

41. Pedersen TR, Tobert JA. Simvastatin: a review. Expert Opin Pharmacother. 2004;5(12):2583–96. doi: 10.1517/14656566.5.12.2583 15571475.

42. van der Aa MP, Elst MA, van de Garde EM, van Mil EG, Knibbe CA, van der Vorst MM. Long-term treatment with metformin in obese, insulin-resistant adolescents: results of a randomized double-blinded placebo-controlled trial. Nutr Diabetes. 2016;6(8):e228. doi: 10.1038/nutd.2016.37 27571249; PubMed Central PMCID: PMC5022149.

43. Smith SJ. Cardiovascular toxicity of antihistamines. Otolaryngol Head Neck Surg. 1994;111(3 Pt 2):348–54. doi: 10.1177/01945998941113p203 7916150.

44. Berson A, Schmets L, Fisch C, Fau D, Wolf C, Fromenty B, et al. Inhibition by nilutamide of the mitochondrial respiratory chain and ATP formation. Possible contribution to the adverse effects of this antiandrogen. J Pharmacol Exp Ther. 1994;270(1):167–76. 8035313.

45. Giorgetti R, di Muzio M, Giorgetti A, Girolami D, Borgia L, Tagliabracci A. Flutamide-induced hepatotoxicity: ethical and scientific issues. Eur Rev Med Pharmacol Sci. 2017;21(1 Suppl):69–77. 28379593.

46. Kobayashi K, Ratain MJ. Pharmacodynamics and long-term toxicity of etoposide. Cancer Chemother Pharmacol. 1994;34 Suppl:S64–8. doi: 10.1007/bf00684866 8070030.

47. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018;77:548–67. doi: 10.1016/j.bioorg.2018.02.009 29475164.

48. Ruminot I, Gutierrez R, Pena-Munzenmayer G, Anazco C, Sotelo-Hitschfeld T, Lerchundi R, et al. NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci. 2011;31(40):14264–71. doi: 10.1523/JNEUROSCI.2310-11.2011 21976511; PubMed Central PMCID: PMC3200293.

49. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312. doi: 10.1042/BJ20110162 21726199; PubMed Central PMCID: PMC3076726.

50. Li N, Oquendo E, Capaldi RA, Robinson JP, He YD, Hamadeh HK, et al. A systematic assessment of mitochondrial function identified novel signatures for drug-induced mitochondrial disruption in cells. Toxicol Sci. 2014;142(1):261–73. doi: 10.1093/toxsci/kfu176 25163676.

51. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 2015;34(10):1349–70. doi: 10.15252/embj.201490379 25796446; PubMed Central PMCID: PMC4491996.

52. Njoku DB. Drug-induced hepatotoxicity: metabolic, genetic and immunological basis. Int J Mol Sci. 2014;15(4):6990–7003. doi: 10.3390/ijms15046990 24758937; PubMed Central PMCID: PMC4013674.

53. Schuster D, Laggner C, Langer T. Why drugs fail—a study on side effects in new chemical entities. Curr Pharm Des. 2005;11(27):3545–59. doi: 10.2174/138161205774414510 16248807.

54. Piotrowska H, Kucinska M, Murias M. Expression of CYP1A1, CYP1B1 and MnSOD in a panel of human cancer cell lines. Mol Cell Biochem. 2013;383(1–2):95–102. Epub 2013/07/23. doi: 10.1007/s11010-013-1758-8 23873331; PubMed Central PMCID: PMC3788183.

55. Nadanaciva S, Rana P, Beeson GC, Chen D, Ferrick DA, Beeson CC, et al. Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform. J Bioenerg Biomembr. 2012;44(4):421–37. Epub 2012/06/13. doi: 10.1007/s10863-012-9446-z 22689143.

56. Kamalian L, Douglas O, Jolly CE, Snoeys J, Simic D, Monshouwer M, et al. The utility of HepaRG cells for bioenergetic investigation and detection of drug-induced mitochondrial toxicity. Toxicol In Vitro. 2018;53:136–47. Epub 2018/08/11. doi: 10.1016/j.tiv.2018.08.001 30096366.

57. Kamalian L, Chadwick AE, Bayliss M, French NS, Monshouwer M, Snoeys J, et al. The utility of HepG2 cells to identify direct mitochondrial dysfunction in the absence of cell death. Toxicol In Vitro. 2015;29(4):732–40. Epub 2015/03/10. doi: 10.1016/j.tiv.2015.02.011 25746382.

58. Molgaard J, Lundh BL, von Schenck H, Olsson AG. Long-term efficacy and safety of simvastatin alone and in combination therapy in treatment of hypercholesterolaemia. Atherosclerosis. 1991;91 Suppl:S21–8. doi: 10.1016/0021-9150(91)90203-f 1789813.

59. Porceddu M, Buron N, Roussel C, Labbe G, Fromenty B, Borgne-Sanchez A. Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria. Toxicol Sci. 2012;129(2):332–45. Epub 2012/09/19. doi: 10.1093/toxsci/kfs197 22987451; PubMed Central PMCID: PMC3446843.

60. Lalonde RL, Lessard D, Gaudreault J. Population pharmacokinetics of terfenadine. Pharm Res. 1996;13(6):832–8. Epub 1996/06/01. doi: 10.1023/a:1016036624935 8792418.

61. Cox SR, Harrington EL, Capponi VJ. Bioavailability studies with ciglitazone in beagles. II. Effect of propantheline bromide and metoclopramide HCL on bioavailability of a tablet. Biopharm Drug Dispos. 1985;6(1):81–90. Epub 1985/01/01. doi: 10.1002/bdd.2510060110 3986303.

62. Thompson-Culkin K, Zussman B, Miller AK, Freed MI. Pharmacokinetics of rosiglitazone in patients with end-stage renal disease. J Int Med Res. 2002;30(4):391–9. Epub 2002/09/19. doi: 10.1177/147323000203000405 12235921.

63. Kaneda N, Nagata H, Furuta T, Yokokura T. Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Res. 1990;50(6):1715–20. Epub 1990/03/15. 2306725.

64. Prior M, Chiruta C, Currais A, Goldberg J, Ramsey J, Dargusch R, et al. Back to the future with phenotypic screening. ACS Chem Neurosci. 2014;5(7):503–13. doi: 10.1021/cn500051h 24902068; PubMed Central PMCID: PMC4102969.

65. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–19. doi: 10.1038/nrd3480 21701501.

66. Munos B. Lessons from 60 years of pharmaceutical innovation. Nature Reviews Drug Discovery. 2009;8:959. doi: 10.1038/nrd2961 https://www.nature.com/articles/nrd2961#supplementary-information. 19949401

67. Kotz J. Phenotypic screening, take two. Science-Business eXchange. 2012;5(15):380–. doi: 10.1038/scibx.2012.380

68. Haasen D, Schopfer U, Antczak C, Guy C, Fuchs F, Selzer P. How Phenotypic Screening Influenced Drug Discovery: Lessons from Five Years of Practice. Assay Drug Dev Technol. 2017;15(6):239–46. doi: 10.1089/adt.2017.796 28800248.

69. Wagner BK, Schreiber SL. The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chem Biol. 2016;23(1):3–9. doi: 10.1016/j.chembiol.2015.11.008 26933731; PubMed Central PMCID: PMC4779180.

70. Kraft TE, Heitmeier MR, Putanko M, Edwards RL, Ilagan MX, Payne MA, et al. A Novel Fluorescence Resonance Energy Transfer-Based Screen in High-Throughput Format To Identify Inhibitors of Malarial and Human Glucose Transporters. Antimicrob Agents Chemother. 2016;60(12):7407–14. doi: 10.1128/AAC.00218-16 27736766; PubMed Central PMCID: PMC5119023.

71. Will Y, Dykens J. Mitochondrial toxicity assessment in industry—a decade of technology development and insight. Expert Opin Drug Metab Toxicol. 2014;10(8):1061–7. Epub 2014/07/16. doi: 10.1517/17425255.2014.939628 25023361.

72. Hynes J, Nadanaciva S, Swiss R, Carey C, Kirwan S, Will Y. A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays. Toxicol In Vitro. 2013;27(2):560–9. Epub 2012/11/14. doi: 10.1016/j.tiv.2012.11.002 23147640.

73. Swiss R, Will Y. Assessment of mitochondrial toxicity in HepG2 cells cultured in high-glucose- or galactose-containing media. Curr Protoc Toxicol. 2011;Chapter 2:Unit2 20. Epub 2011/08/06. doi: 10.1002/0471140856.tx0220s49 21818751.


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#