Tidal inlet seafloor changes induced by recently built hard structures
Autoři:
Carlotta Toso aff001; Fantina Madricardo aff001; Emanuela Molinaroli aff002; Stefano Fogarin aff001; Aleksandra Kruss aff001; Antonio Petrizzo aff001; Nicola Marco Pizzeghello aff003; Luigi Sinapi aff003; Fabio Trincardi aff004
Působiště autorů:
Istituto di Scienze Marine-Consiglio Nazionale delle Ricerche, Arsenale - Tesa 104, Castello 2737/F, 30122 Venezia, Italy
aff001; Department of Environmental Sciences, Informatics and Statistics (DAIS), Università Ca’ Foscari Venezia, Campus Scientifico, Via Torino 155, Mestre, VE, Italy
aff002; Istituto Idrografico della Marina, Passo all’Osservatorio 4, Genova 16134, Italy
aff003; Dipartimento Scienze del Sistema Terra e Tecnologie per l’Ambiente, Piazzale Aldo Moro 7, Roma, Italy
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223240
Souhrn
Tidal inlets are extremely dynamic environments that are often strongly modified by anthropogenic intervention. In this study, we describe the rapid evolution of a highly human-impacted tidal inlet, studied through repeated high-resolution multibeam surveys and geomorphometric analysis. We document the rapid change induced by new hard coastal structures built to protect the historical city of Venice (Italy). A new breakwater erected between 2011 and 2013 induced the formation of large scour holes with the consequent erosion of about 170 · 103 ± 15.6% m3 of sediment until 2016. The construction of a new island in the middle of the inlet and the restriction of the inlet channel caused a general change of the inlet sedimentary regime from depositional to erosive with a net sediment loss of about 612 · 103 ± 42.7% m3, a reduction of the dune field area by more than 50% in about five years, and a coarsening in the sediment distribution. Our results give new insight on the tidal inlet resilience to changes, distinguishing two different phases in its recent evolution: (i) a very rapid response (from 2011 to 2013) of the seafloor morphology with scour-hole erosion at the new breakwater tips at a rate of about 45⋅103 m3/year and the disappearing of dune fields at a rate of 104⋅103 m2/year; and (ii) a general slowdown of the erosive processes from 2013 to 2016. Nevertheless, the erosion continues at the breakwater, though at a reduced rate, possibly representing a threat to the hard structure. In view of global mean sea level rise and consequent proliferation of hard structures along the coast all over the world, the combined use of very high resolution multibeam surveys and repeatable geomorphometric analysis proposed in this study will be crucial for the monitoring and future management of coastal environments.
Klíčová slova:
Islands – Built structures – Italian people – Data acquisition – Sea water – Sediment – Inlets – Lagoons
Zdroje
1. Agardy T, Alder J, Dayton P, Curran S, Kitchingman A, Wilson M, et al. Coastal systems. 2005;.
2. Center for International Earth Science Information Network at Columbia University NY Palisades. Percentage of total population living in coastal areas, CSD Coastal Population Indicator.;.
3. Programme UNE. Marine and coastal ecosystems and human wellbeing: A synthesis report based on the findings of the Millennium Ecosystem Assessment. United Nations Environment Programme; 2006.
4. Kjerfve B. Coastal lagoon processes. vol. 60. Elsevier; 1994.
5. Elias EP, van der Spek AJ. Long-term morphodynamic evolution of Texel Inlet and its ebb-tidal delta (The Netherlands). Marine Geology. 2006;225(1-4):5–21. doi: 10.1016/j.margeo.2005.09.008
6. Bulleri F, Chapman MG. The introduction of coastal infrastructure as a driver of change in marine environments. Journal of Applied Ecology. 2010;47(1):26–35. doi: 10.1111/j.1365-2664.2009.01751.x
7. Dugan J, Airoldi L, Chapman M, Walker S, Schlacher T, Wolanski E, et al. 8.02-Estuarine and coastal structures: environmental effects, a focus on shore and nearshore structures. Treatise on estuarine and coastal science. 2011;8:17–41. doi: 10.1016/B978-0-12-374711-2.00802-0
8. Prandle D. Estuaries: dynamics, mixing, sedimentation and morphology. Cambridge University Press; 2009.
9. Van Rijn LC. Estuarine and coastal sedimentation problems. International Journal of Sediment Research. 2005;20(1):39–51.
10. Reyes-Merlo MÁ, Ortega-Sánchez M, Díez-Minguito M, Losada MA. Efficient dredging strategy in a tidal inlet based on an energetic approach. Ocean & Coastal Management. 2017;146:157–169. doi: 10.1016/j.ocecoaman.2017.07.002
11. de Jonge VN, Schuttelaars HM, van Beusekom JE, Talke SA, de Swart HE. The influence of channel deepening on estuarine turbidity levels and dynamics, as exemplified by the Ems estuary. Estuarine, Coastal and Shelf Science. 2014;139:46–59. doi: 10.1016/j.ecss.2013.12.030
12. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC; 2014.
13. Rodríguez JF, Saco PM, Sandi S, Saintilan N, Riccardi G. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nature communications. 2017;8:16094. doi: 10.1038/ncomms16094 28703130
14. alle Acque M. Interventi alle bocche lagunari per la regolazione dei flussi di marea e Studio di impatto ambientale del progetto di massima. Report 6 (5), Venezia.; 1997.
15. Gentilomo M, Cecconi G. Flood protection system designed for Venice. Hydropower Dams. 1997;2(IV):46–52.
16. Church JA, White NJ. A 20th century acceleration in global sea-level rise. Geophysical research letters. 2006;33(1). doi: 10.1029/2005GL024826
17. Carbognin L, Teatini P, Tomasin A, Tosi L. Global change and relative sea level rise at Venice: what impact in term of flooding. Climate Dynamics. 2010;35(6):1039–1047. doi: 10.1007/s00382-009-0617-5
18. Trincardi F, Barbanti A, Bastianini M, Benetazzo A, Cavaleri L, Chiggiato J, et al. The 1966 flooding of Venice: what time taught us for the future. Oceanography. 2016;29(4):178–186. doi: 10.5670/oceanog.2016.87
19. Cecconi G. The Venice lagoon mobile barriers sea level rise and impact of barrier closures. Bulletin of the Permanent International Association of Navigation Congresses. 1998;(97):47–55.
20. Sumer BM, Fredsøe J. Scour at the head of a vertical-wall breakwater. Coastal Engineering. 1997;29(3-4):201–230. doi: 10.1016/S0378-3839(96)00024-5
21. Burcharth HF, Andersen TL, Lara JL. Upgrade of coastal defence structures against increased loadings caused by climate change: A first methodological approach. Coastal Engineering. 2014;87:112–121. doi: 10.1016/j.coastaleng.2013.12.006
22. Clarke JEH, Mayer LA, Wells DE. Shallow-water imaging multibeam sonars: a new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Marine Geophysical Researches. 1996;18(6):607–629. doi: 10.1007/BF00313877
23. Knaapen M. Sandwave migration predictor based on shape information. Journal of Geophysical Research: Earth Surface. 2005;110(F4). doi: 10.1029/2004JF000195
24. Ernstsen VB, Noormets R, Hebbeln D, Bartholomä A, Flemming BW. Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo-marine letters. 2006;26(3):141–149. doi: 10.1007/s00367-006-0025-3
25. Huvenne VA, Hühnerbach V, Blondel P, Sichi OG, Le T. Detailed mapping of shallow-water environments using image texture analysis on sidescan sonar and multibeam backscatter imagery. In: Proceedings of the 2nd underwater acoustic measurements conference. Heraklion: FORTH; 2007.
26. De Falco G, Tonielli R, Di Martino G, Innangi S, Simeone S, Parnum IM. Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. Continental Shelf Research. 2010;30(18):1941–1950. doi: 10.1016/j.csr.2010.09.006
27. Micallef A, Le Bas TP, Huvenne VA, Blondel P, Hühnerbach V, Deidun A. A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Continental Shelf Research. 2012;39:14–26. doi: 10.1016/j.csr.2012.03.008
28. Paton M, Mayer L, Ware C. Interactive 3D tools for pipeline route planning. In: OCEANS’97. MTS/IEEE Conference Proceedings. vol. 2. IEEE; 1997. p. 1216–1221.
29. Ross SL, Boore DM, Fisher MA, Frankel AD, Geist EL, Hudnut KW, et al. Comments on potential geologic and seismic hazards affecting coastal Ventura County, California. US Geological Survey Open-File Report. 2004;1286:20.
30. Conway KW, Barrie JV, Krautter M. Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry. Geo-Marine Letters. 2005;25(4):205–213. doi: 10.1007/s00367-004-0204-z
31. Roberts J, Brown C, Long D, Bates C. Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats. Coral Reefs. 2005;24(4):654–669. doi: 10.1007/s00338-005-0049-6
32. Lawrence M, Bales C. Acoustic ground discrimination techniques for submerged archaeological site investigations. Marine Technology Society Journal. 2001;35(4):65–73. doi: 10.4031/002533201788058053
33. Mayer LA, Calder BR, Schmidt JS, Malzone C. Providing the Third Dimension: High-resolution Multibeam Sonar as a Tool for Archaeological Investigations-An Example from the D-day Beaches of Normandy. 2003;.
34. Wolfson ML, Naar DF, Howd PA, Locker SD, Donahue BT, Friedrichs CT, et al. Multibeam observations of mine burial near Clearwater, FL, including comparisons to predictions of wave-induced burial. IEEE Journal of Oceanic Engineering. 2007;32(1):103–118. doi: 10.1109/JOE.2006.889317
35. Mayer LA, Raymond R, Glang G, Richardson MD, Traykovski P, Trembanis AC. High-resolution mapping of mines and ripples at the Martha’s Vineyard Coastal Observatory. IEEE Journal of Oceanic engineering. 2007;32(1):133–149. doi: 10.1109/JOE.2007.890953
36. Whitehouse RJ, Harris JM, Sutherland J, Rees J. The nature of scour development and scour protection at offshore windfarm foundations. Marine Pollution Bulletin. 2011;62(1):73–88. doi: 10.1016/j.marpolbul.2010.09.007 21040932
37. Dietsch BJ, Densmore BK, Strauch KR. Repeated Multibeam Echosounder Hydrographic Surveys of 15 Selected Bridge Crossings Along the Missouri River from Niobrara to Rulo, Nebraska, During the Flood of 2011. US Geological Survey; 2014.
38. Zheng S, Xu YJ, Cheng H, Wang B, Lu X. Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques. Environmental monitoring and assessment. 2018;190(1):15. doi: 10.1007/s10661-017-6393-5
39. Ramsay P, Miller W, Murrell D. Supporting renewable energy projects using high resolution hydrographic and geophysical survey techniques, Garden Island, Western Australia. Underwater Technology. 2016;33(4):229–237. doi: 10.3723/ut.33.229
40. Gavazzi GM, Madricardo F, Janowski L, Kruss A, Blondel P, Sigovini M, et al. Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats–application to the Venice Lagoon, Italy. Estuarine, Coastal and Shelf Science. 2016;170:45–60. doi: 10.1016/j.ecss.2015.12.014
41. Madricardo F, Foglini F, Kruss A, Ferrarin C, Pizzeghello NM, Murri C, et al. High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon. Scientific data. 2017;4:170121. doi: 10.1038/sdata.2017.121 28872636
42. Lecours V, Lucieer V, Dolan M, Micallef A. An ocean of possibilities: applications and challenges of marine geomorphometry. Geomorphometry for geosciences, International Society for Geomorphometry, Poznan, Poland. 2015; p. 23–26.
43. Lecours V, Dolan MF, Micallef A, Lucieer VL. A review of marine geomorphometry, the quantitative study of the seafloor. Hydrology & Earth System Sciences. 2016;20(8).
44. Rattray A, Ierodiaconou D, Monk J, Versace V, Laurenson L. Detecting patterns of change in benthic habitats by acoustic remote sensing. Marine Ecology Progress Series. 2013;477:1–13. doi: 10.3354/meps10264
45. Fraccascia S, Winter C, Ernstsen VB, Hebbeln D. Residual currents and bedform migration in a natural tidal inlet (Knudedyb, Danish Wadden Sea). Geomorphology. 2016;271:74–83. doi: 10.1016/j.geomorph.2016.07.017
46. Montereale-Gavazzi G, Roche M, Lurton X, Degrendele K, Terseleer N, Van Lancker V. Seafloor change detection using multibeam echosounder backscatter: case study on the Belgian part of the North Sea. Marine Geophysical Research. 2018;39(1-2):229–247. doi: 10.1007/s11001-017-9323-6
47. Ierodiaconou D, Schimel AC, Kennedy D, Monk J, Gaylard G, Young M, et al. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters. Marine Geophysical Research. 2018;39(1-2):271–288. doi: 10.1007/s11001-017-9338-z
48. Liu S, Goff JA, Flood RD, Christensen B, Austin JA jr. Sorted bedforms off Western Long Island, New York, USA: Asymmetrical morphology and twelve-year migration record. Sedimentology. 2018;65(6):2202–2222. doi: 10.1111/sed.12462
49. Ginsberg SS, Aliotta S. Impact of a rocky outcrop on hydrodynamics and geomorphology in a mesotidal channel. Estuarine, Coastal and Shelf Science. 2019; p. 106250.
50. He Y, Wu Y, Lu C, Wu M, Chen Y, Yang Y. Morphological change of the mouth bar in relation to natural and anthropogenic interferences. Continental Shelf Research. 2019;175:42–52. doi: 10.1016/j.csr.2019.01.015
51. Temmerman S, Meire P, Bouma TJ, Herman PM, Ysebaert T, De Vriend HJ. Ecosystem-based coastal defence in the face of global change. Nature. 2013;504(7478):79. doi: 10.1038/nature12859 24305151
52. Perkins MJ, Ng TP, Dudgeon D, Bonebrake TC, Leung KM. Conserving intertidal habitats: what is the potential of ecological engineering to mitigate impacts of coastal structures? Estuarine, Coastal and Shelf Science. 2015;167:504–515. doi: 10.1016/j.ecss.2015.10.033
53. Scarton F. Long-term trend of the waterbird community breeding in a heavily man-modified coastal lagoon: the case of the Important Bird Area “Lagoon of Venice”. Journal of coastal conservation. 2017;21(1):35–45. doi: 10.1007/s11852-016-0470-8
54. Molinaroli E, Guerzoni S, Sarretta A, Cucco A, Umgiesser G. Links between hydrology and sedimentology in the Lagoon of Venice, Italy. Journal of Marine Systems. 2007;68(3-4):303–317. doi: 10.1016/j.jmarsys.2006.12.003
55. Helsby R. Sand transport in northern Venice lagoon through the tidal inlet of Lido. University of Southampton; 2008.
56. Carbognin L, Cecconi G. The Lagoon of Venice, environment, problems, remedial measures. In: Field Guide of IAS Environmental Sedimentology Conference, Venice. Publ. Consiglo Nationale della Ricerca, Venice; 1997.
57. RAVERA O. The Lagoon of Venice: the result of both natural factors and human influence. Journal of Limnology. 2000;59(1):19–30. doi: 10.4081/jlimnol.2000.19
58. Cucco A, Umgiesser G. Modeling the Venice Lagoon residence time. Ecological modelling. 2006;193(1-2):34–51. doi: 10.1016/j.ecolmodel.2005.07.043
59. Ghetti A. I problemi idraulici della Laguna di Venezia. Istituto di idraulica dell’Università di Padova; 1974.
60. Silvestri S, Marani M, Rinaldo A, Marani A. Vegetazione alofila e morfologia lagunare. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti. 2000;158:1999–2000.
61. Nuova CV. Progetto preliminare di massima delle opere alle bocche, Volume 2, Descrizione dell’ecosistema, Parte II. Ministero dei Lavori Pubblici, Magistrato alle Acque di Venezia. 1989;.
62. Fontolan G, Pillon S, Quadri FD, Bezzi A. Sediment storage at tidal inlets in northern Adriatic lagoons: Ebb-tidal delta morphodynamics, conservation and sand use strategies. Estuarine, Coastal and Shelf Science. 2007;75(1-2):261–277. doi: 10.1016/j.ecss.2007.02.029
63. Muraca A. Shore protection at Venice: a case study. In: Coastal Engineering 1982; 1982. p. 1078–1093.
64. Teledyne. CARIS HIPS and SIPS. User Guide v8.1 (2013). Teledyne; 2013.
65. ESRI. ESRI 2015. ArcGIS Desktop: Release 10.2. Redlands, CA: Environmental Systems Research Institute (2015). ESRI; 2015.
66. Folk RL, Ward WC. Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research. 1957;27(1):3–26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
67. Blott SJ, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth surface processes and Landforms. 2001;26(11):1237–1248. doi: 10.1002/esp.261
68. Woolfe KJ, Michibayashi K. “Basic” entropy grouping of laser-derived grain-size data: an example from the Great Barrier Reef. Computers & Geosciences. 1995;21(4):447–462. doi: 10.1016/0098-3004(94)00092-9
69. Madricardo F, Rizzetto F. Shallow Coastal Landforms. In: Submarine Geomorphology. Springer; 2018. p. 161–183.
70. Ferrarin C, Madricardo F, Rizzetto F, Mc Kiver W, Bellafiore D, Umgiesser G, et al. Geomorphology of scour holes at tidal channel confluences. Journal of Geophysical Research: Earth Surface. 2018;.
71. Ashley GM. Classification of large-scale subaqueous bedforms; a new look at an old problem. Journal of Sedimentary Research. 1990;60(1):160–172.
72. Wright D, Lundblad E, Larkin E, Rinehart R, Murphy J, Cary-Kothera L, et al. ArcGIS Benthic Terrain Modeler, Corvallis, Oregon, Oregon State University, Davey Jones Locker Seafloor Mapping/Marine GIS Laboratory and NOAA Coastal Services Center. Accessible online at: http://www.csc.noaa.gov/products/btm. 2005;.
73. Verfaillie E, Doornenbal P, Mitchell A, White J, Van Lancker V. The bathymetric position index (BPI) as a support tool for habitat mapping. Worked example for the MESH Final Guidance. 2007;14.
74. Lundblad ER, Wright DJ, Miller J, Larkin EM, Rinehart R, Naar DF, et al. A benthic terrain classification scheme for American Samoa. Marine Geodesy. 2006;29(2):89–111. doi: 10.1080/01490410600738021
75. Sappington JM, Longshore KM, Thompson DB. Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. The Journal of wildlife management. 2007;71(5):1419–1426. doi: 10.2193/2005-723
76. Schimel ACG, Ierodiaconou D, Hulands L, Kennedy DM. Accounting for uncertainty in volumes of seabed change measured with repeat multibeam sonar surveys. Continental Shelf Research. 2015;111:52–68. https://doi.org/10.1016/j.csr.2015.10.019
77. Brown CJ, Smith SJ, Lawton P, Anderson JT. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuarine, Coastal and Shelf Science. 2011;92(3):502–520. doi: 10.1016/j.ecss.2011.02.007
78. Diesing M, Green SL, Stephens D, Lark RM, Stewart HA, Dove D. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Continental Shelf Research. 2014;84:107–119. doi: 10.1016/j.csr.2014.05.004
79. Fogarin S, Madricardo F, Zaggia L, Sigovini M, Montereale-Gavazzi G, Kruss A, et al. Tidal inlets in the Anthropocene: geomorphology and benthic habitats of the Chioggia inlet, Venice Lagoon (Italy). Earth Surface Processes and Landforms;.
80. Jenks GF. The data model concept in statistical mapping. International yearbook of cartography. 1967;7:186–190.
81. alle Acque M. Attività di aggiornamento del piano degli interventi per il recupero morfologico in applicazione della delibera del Consiglio dei Ministri del 15 Marzo 2001. Studi di base, linee guida e proposte di intervento del piano morfologico. Technical Report; 2004.
82. Stewart W, Chu D, Malik S, Lerner S, Singh H. Quantitative seafloor characterization using a bathymetric sidescan sonar. IEEE Journal of Oceanic Engineering. 1994;19(4):599–610. doi: 10.1109/48.338396
83. Ferrini VL, Flood RD. The effects of fine-scale surface roughness and grain size on 300 kHz multibeam backscatter intensity in sandy marine sedimentary environments. Marine Geology. 2006;228(1-4):153–172. doi: 10.1016/j.margeo.2005.11.010
84. Müller RD, Eagles S. Mapping seabed geology by ground-truthed textural image/neural network classification of acoustic backscatter mosaics. Mathematical Geology. 2007;39(6):575–592. doi: 10.1007/s11004-007-9113-9
85. Toso C. Evoluzione morfologico-sedimentaria recente della bocca di porto di Lido (Laguna di Venezia-Italia). [B.S. thesis]. Università Ca’Foscari Venezia; 2017.
86. Foody GM. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sensing of Environment. 2010;114(10):2271–2285. doi: 10.1016/j.rse.2010.05.003
87. Tambroni N, Seminara G. Are inlets responsible for the morphological degradation of Venice Lagoon? Journal of Geophysical Research: Earth Surface. 2006;111(F3). doi: 10.1029/2005JF000334
88. Defendi V, Kovačević V, Arena F, Zaggia L. Estimating sediment transport from acoustic measurements in the Venice Lagoon inlets. Continental shelf research. 2010;30(8):883–893. doi: 10.1016/j.csr.2009.12.004
89. Li M, Amos C. SEDTRANS96: upgrade and calibration of the GSC sediment transport model. Geological Survey of Canada Atlantic Open File Report. 1997;3512:140.
90. Li MZ, Amos CL. SEDTRANS96: the upgraded and better calibrated sediment-transport model for continental shelves. Computers & Geosciences. 2001;27(6):619–645. doi: 10.1016/S0098-3004(00)00120-5
91. Umgiesser G, Sclavo M, Carniel S, Bergamasco A. Exploring the bottom stress variability in the Venice Lagoon. Journal of Marine Systems. 2004;51(1-4):161–178. doi: 10.1016/j.jmarsys.2004.05.023
92. Umgiesser G, De Pascalis F, Ferrarin C, Amos CL. A model of sand transport in Treporti channel: northern Venice lagoon. Ocean Dynamics. 2006;56(3-4):339. doi: 10.1007/s10236-006-0076-z
93. Ghezzo M, Guerzoni S, Cucco A, Umgiesser G. Changes in Venice Lagoon dynamics due to construction of mobile barriers. Coastal Engineering. 2010;57(7):694–708. doi: 10.1016/j.coastaleng.2010.02.009
94. Hayes MO. General morphology and sediment patterns in tidal inlets. Sedimentary geology. 1980;26(1-3):139–156. doi: 10.1016/0037-0738(80)90009-3
95. Fitzgerald DM. Interactions between the ebb-tidal delta and landward shoreline; Price Inlet, South Carolina. Journal of Sedimentary Research. 1984;54(4):1303–1318.
96. Rudolph D, Bos KJ, Luijendijk A, Rietema K, Out J. Scour around offshore structures–analysis of field measurements. In: Proceedings 2nd international conference on scour and erosion; 2004. p. 14–17.
97. Whitehouse R, Harris J, Mundon T, Sutherland J. Scour at offshore structures. American Society of Civil Engineers; 2010.
98. Sato S, Tanaka N, Irie I. Study on scouring at the foot of coastal structures. Coastal Engineering in Japan. 1969;12(1):83–98. doi: 10.1080/05785634.1969.11924093
99. Katayama T, Irie I, Kawakami T. Performance of Offshore Breakwataers of the Niigata Coast. Coastal Engineering in Japan. 1974;17(1):129–139. doi: 10.1080/05785634.1974.11924188
100. Hydraulics D. Scour near harbour of IJmuiden (in Dutch). Report H 460, Delft, The Netherlands.; 1998.
101. Lillycrop WJ, Hughes SA. Scour hole problems experienced by the Corps of Engineers; Data presentation and summary. COASTAL ENGINEERING RESEARCH CENTER VICKSBURG MS; 1993.
102. Fredsøe J, Sumer BM. Scour at the round head of a rubble-mound breakwater. Coastal engineering. 1997;29(3-4):231–262. doi: 10.1016/S0378-3839(96)00025-7
103. Sumer BM, Whitehouse RJ, Tørum A. Scour around coastal structures: a summary of recent research. Coastal Engineering. 2001;44(2):153–190. doi: 10.1016/S0378-3839(01)00024-2
104. Noormets R, Ernstsen VB, Bartholomä A, Flemming BW, Hebbeln D. Implications of bedform dimensions for the prediction of local scour in tidal inlets: a case study from the southern North Sea. Geo-Marine Letters. 2006;26(3):165–176. doi: 10.1007/s00367-006-0029-z
105. Pomaro A, Cavaleri L, Papa A, Lionello P. 39 years of directional wave recorded data and relative problems, climatological implications and use. Scientific data. 2018;5:180139. doi: 10.1038/sdata.2018.139 30015808
106. van Rijn LC. Principles of sedimentation and erosion engineering in rivers, estuaries and coastal seas including mathematical modelling package (toolkit on CD-ROM); 2005.
107. Oumeraci H. Review and analysis of vertical breakwater failures—lessons learned. Coastal engineering. 1994;22(1-2):3–29. doi: 10.1016/0378-3839(94)90046-9
108. DUFFY GP. Patterns of morphometric parameters in a large bedform field: development and application of a tool for automated bedform morphometry. Irish Journal of Earth Sciences. 2012; p. 31–39.
109. Cazenave PW, Dix JK, Lambkin DO, McNeill LC. A method for semi-automated objective quantification of linear bedforms from multi-scale digital elevation models. Earth Surface Processes and Landforms. 2013;38(3):221–236. doi: 10.1002/esp.3269
110. Duffy GP, Hughes-Clarke JE. Application of spatial cross correlation to detection of migration of submarine sand dunes. Journal of Geophysical Research: Earth Surface. 2005;110(F4). doi: 10.1029/2004JF000192
111. Duffy GP, Clarke JEH. Measurement of bedload transport in a coastal sea using repeat swath bathymetry surveys: assessing bedload formulae using sand dune migration. Sediments, Morphology and Sedimentary Processes on Continental Shelves: Advances in Technologies, Research, and Applications. 2012; p. 249–271.
112. Salvatierra MM, Aliotta S, Ginsberg SS. Morphology and dynamics of large subtidal dunes in Bahia Blanca estuary, Argentina. Geomorphology. 2015;246:168–177. doi: 10.1016/j.geomorph.2015.05.037
113. Ernstsen VB, Noormets R, Winter C, Hebbeln D, Bartholomä A, Flemming BW, et al. Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo-Marine Letters. 2006;26(3):151–163. doi: 10.1007/s00367-006-0026-2
114. Nittrouer JA, Allison MA, Campanella R. Bedform transport rates for the lowermost Mississippi River. Journal of Geophysical Research: Earth Surface. 2008;113(F3). doi: 10.1029/2007JF000795
115. Knaapen M, van Bergen Henegouw C, Hu Y. Quantifying bedform migration using multi-beam sonar. Geo-marine letters. 2005;25(5):306–314. doi: 10.1007/s00367-005-0005-z
116. Ferrarin C, Tomasin A, Bajo M, Petrizzo A, Umgiesser G. Tidal changes in a heavily modified coastal wetland. Continental Shelf Research. 2015;101:22–33. doi: 10.1016/j.csr.2015.04.002
117. Amos C, Umgiesser G, Tosi L, Townend I. The coastal morphodynamics of Venice lagoon, Italy: An introduction. Continental Shelf Research. 2010;30:837–846. doi: 10.1016/j.csr.2010.01.014
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis