Association between maternal fermented food consumption and infant sleep duration: The Japan Environment and Children's Study
Autoři:
Narumi Sugimori aff001; Kei Hamazaki aff001; Kenta Matsumura aff002; Haruka Kasamatsu aff002; Akiko Tsuchida aff001; Hidekuni Inadera aff001;
Působiště autorů:
Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
aff001; Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222792
Souhrn
Background
Evidence indicates that human circadian rhythm is affected by the intestinal microbiota, and establishment of the circadian rhythm begins during fetal development. However, the relationship between maternal fermented food intake and infant sleep duration has not been previously investigated. In this study, we examined whether dietary consumption of fermented food during pregnancy is associated with infant sleep duration at 1 year of age.
Methods
This birth cohort study used data from a nationwide government-funded study called The Japan Environment and Children’s Study (JECS). After exclusions from a dataset comprising 104,065 JECS records, we evaluated 72,624 mother-child pairs where the child was 1 year old. We investigated the association between dietary intake of fermented foods during pregnancy and infant sleep duration of less than 11 h at 1 year of age.
Results
Multivariable logistic regression showed that maternal intake of fermented food, especially miso, during the pregnancy was independently associated with reduced risk of infant sleep duration of less than 11 h.
Conclusions
Further research, including interventional studies, is warranted to confirm the association between consumption of fermented foods during pregnancy and sufficient infant sleep duration.
Trial registration
Klíčová slova:
Labor and delivery – Pregnancy – Gastrointestinal tract – Microbiome – Food consumption – Infants – Circadian rhythms – Sleep
Zdroje
1. Touchette E, Cote SM, Petit D, Liu X, Boivin M, Falissard B, et al. Short nighttime sleep-duration and hyperactivity trajectories in early childhood. Pediatrics. 2009;124(5):e985–93. Epub 2009/10/21. doi: 10.1542/peds.2008-2005 19841107.
2. Sekine M, Yamagami T, Handa K, Saito T, Nanri S, Kawaminami K, et al. A dose-response relationship between short sleeping hours and childhood obesity: results of the Toyama Birth Cohort Study. Child Care Health Dev. 2002;28(2):163–70. Epub 2002/04/16. 11952652.
3. Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330(7504):1357. Epub 2005/05/24. doi: 10.1136/bmj.38470.670903.E0 15908441; PubMed Central PMCID: PMC558282.
4. Sullivan A, Nord CE. Probiotics and gastrointestinal diseases. J Intern Med. 2005;257(1):78–92. Epub 2004/12/21. doi: 10.1111/j.1365-2796.2004.01410.x 15606379.
5. Butel MJ. Probiotics, gut microbiota and health. Med Mal Infect. 2014;44(1):1–8. Epub 2013/12/03. doi: 10.1016/j.medmal.2013.10.002 24290962.
6. D R. The effect of probiotic supplementation on self-reported sleep quality. 2016.
7. Gille D, Schmid A, Walther B, Vergeres G. Fermented Food and Non-Communicable Chronic Diseases: A Review. Nutrients. 2018;10(4). Epub 2018/04/05. doi: 10.3390/nu10040448 29617330; PubMed Central PMCID: PMC5946233.
8. Mantaring J, Benyacoub J, Destura R, Pecquet S, Vidal K, Volger S, et al. Effect of maternal supplement beverage with and without probiotics during pregnancy and lactation on maternal and infant health: a randomized controlled trial in the Philippines. BMC Pregnancy Childbirth. 2018;18(1):193. Epub 2018/06/02. doi: 10.1186/s12884-018-1828-8 29855271; PubMed Central PMCID: PMC5984298.
9. Sanz Y. Gut microbiota and probiotics in maternal and infant health. Am J Clin Nutr. 2011;94(6 Suppl):2000S–5S. Epub 2011/05/06. doi: 10.3945/ajcn.110.001172 21543533.
10. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(5):690–703. Epub 2015/05/15. doi: 10.1016/j.chom.2015.04.004 25974306.
11. Nuriel-Ohayon M, Neuman H, Koren O. Microbial Changes during Pregnancy, Birth, and Infancy. Front Microbiol. 2016;7:1031. Epub 2016/07/30. doi: 10.3389/fmicb.2016.01031 27471494; PubMed Central PMCID: PMC4943946.
12. Stewart CJ, Ajami NJ, O'Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–8. Epub 2018/10/26. doi: 10.1038/s41586-018-0617-x 30356187; PubMed Central PMCID: PMC6415775.
13. Yang I, Corwin EJ, Brennan PA, Jordan S, Murphy JR, Dunlop A. The Infant Microbiome: Implications for Infant Health and Neurocognitive Development. Nurs Res. 2016;65(1):76–88. Epub 2015/12/15. doi: 10.1097/NNR.0000000000000133 26657483; PubMed Central PMCID: PMC4681407.
14. Carlson AL, Xia K, Azcarate-Peril MA, Goldman BD, Ahn M, Styner MA, et al. Infant Gut Microbiome Associated With Cognitive Development. Biol Psychiatry. 2018;83(2):148–59. Epub 2017/08/11. doi: 10.1016/j.biopsych.2017.06.021 28793975; PubMed Central PMCID: PMC5724966.
15. Kawamoto T, Nitta H, Murata K, Toda E, Tsukamoto N, Hasegawa M, et al. Rationale and study design of the Japan environment and children's study (JECS). BMC public health. 2014;14:25. Epub 2014/01/15. doi: 10.1186/1471-2458-14-25 24410977; PubMed Central PMCID: PMC3893509.
16. Michikawa T, Nitta H, Nakayama SF, Yamazaki S, Isobe T, Tamura K, et al. Baseline Profile of Participants in the Japan Environment and Children's Study (JECS). J Epidemiol. 2018;28(2):99–104. Epub 2017/11/03. doi: 10.2188/jea.JE20170018 29093304; PubMed Central PMCID: PMC5792233.
17. Yokoyama Y, Takachi R, Ishihara J, Ishii Y, Sasazuki S, Sawada N, et al. Validity of Short and Long Self-Administered Food Frequency Questionnaires in Ranking Dietary Intake in Middle-Aged and Elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) Protocol Area. J Epidemiol. 2016;26(8):420–32. Epub 2016/04/12. doi: 10.2188/jea.JE20150064 27064130; PubMed Central PMCID: PMC4967663.
18. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation's updated sleep duration recommendations: final report. Sleep Health. 2015;1(4):233–43. Epub 2015/12/01. doi: 10.1016/j.sleh.2015.10.004 29073398.
19. Konturek PC, Brzozowski T, Konturek SJ. Gut clock: implication of circadian rhythms in the gastrointestinal tract. J Physiol Pharmacol. 2011;62(2):139–50. Epub 2011/06/16. 21673361.
20. Pan X. Clock is important for food and circadian regulation of macronutrient absorption in mice. Journal of Lipid Research. 2009;50:1800–13. doi: 10.1194/jlr.M900085-JLR200 19387090
21. Scheving LA. Biological clocks and the digestive system. Gastroenterology. 2000;119(2):536–49. Epub 2000/08/10. doi: 10.1053/gast.2000.9305 10930389.
22. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514–29. Epub 2014/11/25. doi: 10.1016/j.cell.2014.09.048 25417104.
23. Liang X. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. PNAS. 2015:10479–84. doi: 10.1073/pnas.1501305112 26240359
24. Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17(5):681–9. Epub 2015/04/22. doi: 10.1016/j.chom.2015.03.006 25891358; PubMed Central PMCID: PMC4433408.
25. Okawa H, Morokuma S, Maehara K, Arata A, Ohmura Y, Horinouchi T, et al. Eye movement activity in normal human fetuses between 24 and 39 weeks of gestation. PLoS One. 2017;12(7):e0178722. Epub 2017/07/13. doi: 10.1371/journal.pone.0178722 28700709; PubMed Central PMCID: PMC5507482.
26. Bisanti L, Olsen J, Basso O, Thonneau P, Karmaus W. Shift work and subfecundity: a European multicenter study. European Study Group on Infertility and Subfecundity. J Occup Environ Med. 1996;38(4):352–8. Epub 1996/04/01. doi: 10.1097/00043764-199604000-00012 8925318.
27. Mendez N, Abarzua-Catalan L, Vilches N, Galdames HA, Spichiger C, Richter HG, et al. Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One. 2012;7(8):e42713. Epub 2012/08/23. doi: 10.1371/journal.pone.0042713 22912724; PubMed Central PMCID: PMC3418288.
28. Rivkees SA. Developing circadian rhythmicity in infants. Pediatrics. 2003;112(2):373–81. Epub 2003/08/05. doi: 10.1542/peds.112.2.373 12897290.
29. Hellbruegge T, Lange JE, Stehr K, Rutenfranz J. Circadian Periodicity of Physiological Functions in Different Stages of Infancy and Childhood. Annals of the New York Academy of Sciences. 1964;117:361–73. Epub 1964/09/10. doi: 10.1111/j.1749-6632.1964.tb48193.x 14196654.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs