Cardiorespiratory factors related to the increase in oxygen consumption during exercise in individuals with stroke
Autoři:
Kazuaki Oyake aff001; Yasuto Baba aff002; Nao Ito aff002; Yuki Suda aff002; Jun Murayama aff002; Ayumi Mochida aff002; Kunitsugu Kondo aff002; Yohei Otaka aff002; Kimito Momose aff001
Působiště autorů:
Department of Physical Therapy, School of Health Sciences, Shinshu University, Matsumoto, Nagano, Japan
aff001; Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Chiba, Japan
aff002; Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
aff003
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0217453
Souhrn
Background
Understanding the cardiorespiratory factors related to the increase in oxygen consumption (V˙O2) during exercise is essential for improving cardiorespiratory fitness in individuals with stroke. However, cardiorespiratory factors related to the increase in V˙O2 during exercise in these individuals have not been examined using multivariate analysis. This study aimed to identify cardiorespiratory factors related to the increase in V˙O2 during a graded exercise in terms of respiratory function, cardiac function, and the ability of skeletal muscles to extract oxygen.
Methods
Eighteen individuals with stroke (aged 60.1 ± 9.4 years, 67.1 ± 30.8 days poststroke) underwent a graded exercise test for the assessment of cardiorespiratory response to exercise. The increases in V˙O2 from rest to first threshold and that from rest to peak exercise were measured as a dependent variable. The increases in respiratory rate, tidal volume, minute ventilation, heart rate, stroke volume, cardiac output, and arterial-venous oxygen difference from rest to first threshold and those from rest to peak exercise were measured as the independent variables.
Results
From rest to first threshold, the increases in arterial-venous oxygen difference (β = 0.711) and cardiac output (β = 0.572) were significant independent variables for the increase in V˙O2 (adjusted R2 = 0.877 p < 0.001). Similarly, from rest to peak exercise, the increases in arterial-venous oxygen difference (β = 0.665) and cardiac output (β = 0.636) were significant factors related to the increase in V˙O2 (adjusted R2 = 0.923, p < 0.001).
Conclusion
Our results suggest that the ability of skeletal muscle to extract oxygen is a major cardiorespiratory factor related to the increase in V˙O2 during exercise testing in individuals with stroke. For improved cardiorespiratory fitness in individuals with stroke, the amount of functional muscle mass during exercise may need to be increased.
Klíčová slova:
stroke – Skeletal muscles – Respiration – Exercise – Oxygen – Cardiac output – Heart rate – Tidal volume
Zdroje
1. Smith AC, Saunders DH, Mead G. Cardiorespiratory fitness after stroke: a systematic review. Int J Stroke. 2012;7(6):499–510. Epub 2012/05/09. doi: 10.1111/j.1747-4949.2012.00791.x 22568786.
2. Dunn A, Marsden DL, Van Vliet P, Spratt NJ, Callister R. Independently ambulant, community-dwelling stroke survivors have reduced cardiorespiratory fitness, mobility and knee strength compared to an age- and gender-matched cohort. Top Stroke Rehabil. 2017;24(3):163–169. Epub 2016/09/28. doi: 10.1080/10749357.2016.1236482 27670905.
3. Kelly JO, Kilbreath SL, Davis GM, Zeman B, Raymond J. Cardiorespiratory fitness and walking ability in subacute stroke patients. Arch Phys Med Rehabil. 2003;84(12):1780–1785. doi: 10.1016/s0003-9993(03)00376-9 14669183.
4. Patterson SL, Forrester LW, Rodgers MM, Ryan AS, Ivey FM, Sorkin JD, et al. Determinants of walking function after stroke: differences by deficit severity. Arch Phys Med Rehabil. 2007;88(1):115–119. doi: 10.1016/j.apmr.2006.10.025 17207686.
5. Boss HM, Van Schaik SM, Witkamp TD, Geerlings MI, Weinstein HC, Van den Berg-Vos RM. Cardiorespiratory fitness, cognition and brain structure after TIA or minor ischemic stroke. Int J Stroke. 2017;12(7):724–731. Epub 2017/04/06. doi: 10.1177/1747493017702666 28382852.
6. Mackay-Lyons MJ, Makrides L. Exercise capacity early after stroke. Arch Phys Med Rehabil. 2002;83(12):1697–1702. doi: 10.1053/apmr.2002.36395 12474172.
7. Ivey FM, Macko RF, Ryan AS, Hafer-Macko CE. Cardiovascular health and fitness after stroke. Top Stroke Rehabil. 2005;12(1):1–16. doi: 10.1310/GEEU-YRUY-VJ72-LEAR 15735997.
8. Kim BR, Han EY, Joo SJ, Kim SY, Yoon HM. Cardiovascular fitness as a predictor of functional recovery in subacute stroke patients. Disabil Rehabil. 2014;36(3):227–231. Epub 2013/04/17. doi: 10.3109/09638288.2013.787123 23594057.
9. Thilarajah S, Mentiplay BF, Bower KJ, Tan D, Pua YH, Williams G, et al. Factors associated with post-stroke physical activity: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018;99(9):1876–1889. Epub 2017/10/19. doi: 10.1016/j.apmr.2017.09.117 29056502.
10. Saunders DH, Greig CA, Mead GE. Physical activity and exercise after stroke: review of multiple meaningful benefits. Stroke. 2014;45(12):3742–3747. Epub 2014/11/04. doi: 10.1161/STROKEAHA.114.004311 25370588.
11. Binder RK, Wonisch M, Corra U, Cohen-Solal A, Vanhees L, Saner H, et al. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil. 2008;15(6):726–734. doi: 10.1097/HJR.0b013e328304fed4 19050438.
12. Boyne P, Reisman D, Brian M, Barney B, Franke A, Carl D, et al. Ventilatory threshold may be a more specific measure of aerobic capacity than peak oxygen consumption rate in persons with stroke. Top Stroke Rehabil. 2017;24(2):149–157. Epub 2016/07/25. doi: 10.1080/10749357.2016.1209831 27454553; PubMed Central PMCID: PMC5588902.
13. Billinger SA, Coughenour E, Mackay-Lyons MJ, Ivey FM. Reduced cardiorespiratory fitness after stroke: biological consequences and exercise-induced adaptations. Stroke Res Treat. 2012;2012:959120. Epub 2011/08/14. doi: 10.1155/2012/959120 21876848; PubMed Central PMCID: PMC3159380.
14. Saunders DH, Sanderson M, Hayes S, Kilrane M, Greig CA, Brazzelli M, et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2016;3:CD003316. Epub 2016/03/24. doi: 10.1002/14651858.CD003316.pub6 27010219.
15. Richardson RS, Harms CA, Grassi B, Hepple RT. Skeletal muscle: master or slave of the cardiovascular system? Med Sci Sports Exerc. 2000;32(1):89–93. Epub 2000/01/27. doi: 10.1097/00005768-200001000-00014 10647534.
16. Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84. doi: 10.1097/00005768-200001000-00012 10647532.
17. Gifford JR, Garten RS, Nelson AD, Trinity JD, Layec G, Witman MA, et al. Symmorphosis and skeletal muscle VO2 max: in vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human. J Physiol. 2016;594(6):1741–1751. Epub 2015/11/29. doi: 10.1113/JP271229 26614395; PubMed Central PMCID: PMC4799962.
18. Volkers MEM, Mouton LJ, Jeneson JAL, Hettinga FJ. Active muscle mass affects endurance physiology: a review of single versus double-leg cycling. Kinesiology. 2018;50(1):19–32.
19. Sisante JF, Mattlage AE, Arena R, Rippee MA, Billinger SA. Decreased tidal volume may limit cardiopulmonary performance during exercise in subacute stroke. J Cardiopulm Rehabil Prev. 2015;35(5):334–341. doi: 10.1097/HCR.0000000000000119 26034936; PubMed Central PMCID: PMC4552576.
20. Jakovljevic DG, Moore SA, Tan LB, Rochester L, Ford GA, Trenell MI. Discrepancy between cardiac and physical functional reserves in stroke. Stroke. 2012;43(5):1422–1425. Epub 2012/02/23. doi: 10.1161/STROKEAHA.111.649434 22363066.
21. Tomczak CR, Jelani A, Haennel RG, Haykowsky MJ, Welsh R, Manns PJ. Cardiac reserve and pulmonary gas exchange kinetics in patients with stroke. Stroke. 2008;39(11):3102–3106. Epub 2008/08/14. doi: 10.1161/STROKEAHA.108.515346 18703810.
22. Moore SA, Jakovljevic DG, Ford GA, Rochester L, Trenell MI. Exercise induces peripheral muscle but not cardiac adaptations after stroke: a randomized controlled pilot trial. Arch Phys Med Rehabil. 2016;97(4):596–603. Epub 2016/01/04. doi: 10.1016/j.apmr.2015.12.018 26763949; PubMed Central PMCID: PMC5813708.
23. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6 1202204.
24. van de Port IG, Kwakkel G, Wittink H. Systematic review of cardiopulmonary exercise testing post stroke: Are we adhering to practice recommendations? J Rehabil Med. 2015;47(10):881–900. doi: 10.2340/16501977-2031 26551052.
25. Tseng BY, Kluding P. The relationship between fatigue, aerobic fitness, and motor control in people with chronic stroke: a pilot study. J Geriatr Phys Ther. 2009;32(3):97–102. 20128333; PubMed Central PMCID: PMC4353495.
26. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128(8):873–934. Epub 2013/07/24. doi: 10.1161/CIR.0b013e31829b5b44 23877260.
27. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. 7154893.
28. Roecker K, Striegel H, Dickhuth HH. Heart-rate recommendations: transfer between running and cycling exercise? Int J Sports Med. 2003;24(3):173–8. Epub 2003/05/13. doi: 10.1055/s-2003-39087 12740734.
29. Gordon D, Mehter M, Gernigon M, Caddy O, Keiller D, Barnes R. The effects of exercise modality on the incidence of plateau at VO2max. Clin Physiol Funct Imaging. 2012;32(5):394–399. Epub 2012/08/04. doi: 10.1111/j.1475-097X.2012.01142.x 22856347.
30. Knaier R, Niemeyer M, Wagner J, Infanger D, Hinrichs T, Klenk C, et al. Which cutoffs for secondary V O2max criteria are robust to diurnal variations? Med Sci Sports Exerc. 2019;51(5):1006–1013. Epub 2018/12/15. doi: 10.1249/MSS.0000000000001869 30550515.
31. Charloux A, Lonsdorfer-Wolf E, Richard R, Lampert E, Oswald-Mammosser M, Mettauer B, et al. A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the "direct" Fick method. Eur J Appl Physiol. 2000;82(4):313–320. doi: 10.1007/s004210000226 10958374.
32. Richard R, Lonsdorfer-Wolf E, Charloux A, Doutreleau S, Buchheit M, Oswald-Mammosser M, et al. Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol. 2001;85(3–4):202–207. doi: 10.1007/s004210100458 11560071.
33. Fortin J, Habenbacher W, Heller A, Hacker A, Grüllenberger R, Innerhofer J, et al. Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement. Comput Biol Med. 2006;36(11):1185–1203. Epub 2005/08/29. doi: 10.1016/j.compbiomed.2005.06.001 16131462.
34. De Cort SC, Innes JA, Barstow TJ, Guz A. Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans. J Physiol. 1991;441:501–512. doi: 10.1113/jphysiol.1991.sp018764 1816384; PubMed Central PMCID: PMC1180211.
35. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191–225. Epub 2010/06/28. doi: 10.1161/CIR.0b013e3181e52e69 20585013.
36. Saengsuwan J, Berger L, Schuster-Amft C, Nef T, Hunt KJ. Test-retest reliability and four-week changes in cardiopulmonary fitness in stroke patients: evaluation using a robotics-assisted tilt table. BMC Neurol. 2016;16(1):163. Epub 2016/09/06. doi: 10.1186/s12883-016-0686-0 27600918; PubMed Central PMCID: PMC5012058.
37. Oyake K, Yamaguchi T, Oda C, Kudo D, Kondo K, Otaka Y, et al. Unilateral arm crank exercise test for assessing cardiorespiratory fitness in individuals with hemiparetic stroke. Biomed Res Int. 2017;2017:6862041. Epub 2017/12/31. doi: 10.1155/2017/6862041 29457034; PubMed Central PMCID: PMC5804117.
38. Bosch PR, Holzapfel S, Traustadottir T. Feasibility of measuring ventilatory threshold in adults with stroke-induced hemiparesis: implications for exercise prescription. Arch Phys Med Rehabil. 2015;96(10):1779–1784. Epub 2015/05/12. doi: 10.1016/j.apmr.2015.04.023 25979162.
39. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31. Epub 1975/01/01. 1135616.
40. Erdfelder E, Faul F, Buchner A. GPOWER: A general power analysis program. 1996;28(1):1–11. doi: 10.3758/bf03203630
41. Maher JM, Markey JC, Ebert-May D. The other half of the story: effect size analysis in quantitative research. CBE Life Sci Educ. 2013;12(3):345–351. Epub 2013/09/06. doi: 10.1187/cbe.13-04-0082 24006382; PubMed Central PMCID: PMC3763001.
42. Billinger SA, Tseng BY, Kluding PM. Modified total-body recumbent stepper exercise test for assessing peak oxygen consumption in people with chronic stroke. Phys Ther. 2008;88(10):1188–1195. Epub 2008/09/04. doi: 10.2522/ptj.20080072 18772275; PubMed Central PMCID: PMC2557055.
43. Koga S, Barstow TJ, Shiojiri T, Takaishi T, Fukuba Y, Kondo N, et al. Effect of muscle mass on V(O(2)) kinetics at the onset of work. J Appl Physiol (1985). 2001;90(2):461–468. doi: 10.1152/jappl.2001.90.2.461 11160043.
44. Bond V, Balkissoon B, Caprarola M, Tearney RJ. Aerobic capacity during two-arm and one-leg ergometric exercise. Int Rehabil Med. 1986;8(2):79–81. 3804602.
45. Stamford BA, Weltman A, Fulco C. Anaerobic threshold and cardiovascular responses during one- versus two-legged cycling. Res Q. 1978;49(3):351–362. 725305.
46. Lewis SF, Taylor WF, Graham RM, Pettinger WA, Schutte JE, Blomqvist CG. Cardiovascular responses to exercise as functions of absolute and relative work load. J Appl Physiol Respir Environ Exerc Physiol. 1983;54(5):1314–1323. doi: 10.1152/jappl.1983.54.5.1314 6863092.
47. Neary PJ, Wenger HA. The effects of one- and two-legged exercise on the lactate and ventilatory threshold. Eur J Appl Physiol Occup Physiol. 1986;54(6):591–595. doi: 10.1007/bf00943346 3948855.
48. Shephard RJ, Bouhlel E, Vandewalle H, Monod H. Muscle mass as a factor limiting physical work. J Appl Physiol (1985). 1988;64(4):1472–1479. doi: 10.1152/jappl.1988.64.4.1472 3378982.
49. Ogita F, Stam RP, Tazawa HO, Toussaint HM, Hollander AP. Oxygen uptake in one-legged and two-legged exercise. Med Sci Sports Exerc. 2000;32(10):1737–1742. doi: 10.1097/00005768-200010000-00012 11039646.
50. MacInnis MJ, Morris N, Sonne MW, Zuniga AF, Keir PJ, Potvin JR, et al. Physiological responses to incremental, interval, and continuous counterweighted single-leg and double-leg cycling at the same relative intensities. Eur J Appl Physiol. 2017;117(7):1423–1435. Epub 2017/05/13. doi: 10.1007/s00421-017-3635-8 28497384.
51. Kounalakis SN, Nassis GP, Koskolou MD, Geladas ND. The role of active muscle mass on exercise-induced cardiovascular drift. J Sports Sci Med. 2008;7(3):395–401. Epub 2008/09/01. 24149908; PubMed Central PMCID: PMC3761905.
52. Jensen-Urstad M, Svedenhag J, Sahlin K. Effect of muscle mass on lactate formation during exercise in humans. Eur J Appl Physiol Occup Physiol. 1994;69(3):189–195. doi: 10.1007/bf01094787 8001528.
53. Coelho Junior HJ, Gambassi BB, Diniz TA, Fernandes IM, Caperuto É, Uchida MC, et al. Inflammatory mechanisms associated with skeletal muscle sequelae after stroke: role of physical exercise. Mediators Inflamm. 2016;2016:3957958. Epub 2016/08/28. doi: 10.1155/2016/3957958 27647951; PubMed Central PMCID: PMC5018330.
54. Ivey FM, Hafer-Macko CE, Ryan AS, Macko RF. Impaired leg vasodilatory function after stroke: adaptations with treadmill exercise training. Stroke. 2010;41(12):2913–2917. Epub 2010/10/21. doi: 10.1161/STROKEAHA.110.599977 20966405; PubMed Central PMCID: PMC3748932.
55. Billinger SA, Kluding PM. Use of Doppler ultrasound to assess femoral artery adaptations in the hemiparetic limb in people with stroke. Cerebrovasc Dis. 2009;27(6):552–558. Epub 2009/04/24. doi: 10.1159/000214218 19390180.
56. Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol. 2012;3:142. Epub 2012/05/18. doi: 10.3389/fphys.2012.00142 22629249; PubMed Central PMCID: PMC3355468.
57. Ivy JL, Withers RT, Van Handel PJ, Elger DH, Costill DL. Muscle respiratory capacity and fiber type as determinants of the lactate threshold. J Appl Physiol Respir Environ Exerc Physiol. 1980;48(3):523–527. Epub 1980/03/01. doi: 10.1152/jappl.1980.48.3.523 7372524.
58. Lanini B, Bianchi R, Romagnoli I, Coli C, Binazzi B, Gigliotti F, et al. Chest wall kinematics in patients with hemiplegia. Am J Respir Crit Care Med. 2003;168(1):109–113. Epub 2003/04/24. doi: 10.1164/rccm.200207-745OC 12714347.
59. Tang A, Eng JJ, Tsang TS, Krassioukov AV. Cognition and motor impairment correlates with exercise test performance after stroke. Med Sci Sports Exerc. 2013;45(4):622–627. doi: 10.1249/MSS.0b013e31827a0169 23135375; PubMed Central PMCID: PMC4492717.
60. Tang A, Sibley KM, Thomas SG, McIlroy WE, Brooks D. Maximal exercise test results in subacute stroke. Arch Phys Med Rehabil. 2006;87(8):1100–1105. doi: 10.1016/j.apmr.2006.04.016 16876556.
61. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(8):2532–2553. Epub 2014/05/20. doi: 10.1161/STR.0000000000000022 24846875.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis