Time series analysis and forecasting with ECOTOOL
Autoři:
Diego J. Pedregal aff001
Působiště autorů:
ETSI Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221238
Souhrn
This paper presents ECOTOOL, a new free MATLAB toolbox that embodies several routines for identification, validation and forecasting of dynamic models. The toolbox includes a wide range of exploratory, descriptive and diagnostic statistical tools with visual support, designed in easy-to-use Graphical User Interfaces. It also incorporates complex automatic procedures for identification, exact maximum likelihood estimation and outlier detection for many types of models available in the literature (like multi-seasonal ARIMA models, transfer functions, Exponential Smoothing, Unobserved Components, VARX). ECOTOOL is the outcome of a long period of programming effort with the aim of producing a user friendly toolkit such that, just a few lines of code written in MATLAB are able to perform a comprehensive analysis of time series. The toolbox is supplied with an in-depth documentation system and online help and is available on the internet. The paper describes the main functionalities of the toolbox, and its power is shown working on several real examples.
Klíčová slova:
Carbon dioxide – Seasons – Polynomials – Electricity – Random walk – Graphical user interfaces – Transfer functions
Zdroje
1. The MathWorks Inc. MATLAB—The Language of Technical Computing, Version R2018a. Natick, Massachusetts. URL http://www.mathworks.com/products/matlab/; 2018.
2. Taylor CJ, Pedregal DJ, Young PC, Tych W. Environmental Time Series Analysis and Forecasting with the Captain Toolbox. Environmental Modelling & Software. 2007;22(6):797–814. doi: 10.1016/j.envsoft.2006.03.002
3. Liu LM. Time Series Analysis and forecasting. Scientific Computing Associates Corp.; 2009.
4. Gómez V, Maravall A. Automatic Modeling Methods for Univariate Series. In: A Course in Time Series. John Wiley & Sons, Inc.; 2001. p. 171–201.
5. Hyndman RJ, Khandakar Y. Automatic Time Series Forecasting: The Forecast Package for R. Journal of Statistical Software. 2008;3(27):1–22.
6. Cottrell A, R L. Gretl; 2018. http://gretl.sourceforge.net/.
7. Koopman S, Harvey A, Doornik J, Shephard N. STAMP 8.2: Structural Time Series Analyser and Modeller and Predictor. Timberlake Consultants Limited; 2009.
8. Bossche FV. Fitting State Space Models with EViews. Journal of Statistical Software. 2011;41(8):1–16. doi: 10.18637/jss.v041.i08
9. Selukar R. State Space Modeling Using SAS. Journal of Statistical Software. 2011;41(12):1–13. doi: 10.18637/jss.v041.i12
10. Drukker R, Gates R. State Space Methods in Stata. Journal of Statistical Software. 2011;41(10):1–25. doi: 10.18637/jss.v041.i10
11. Hyndman R, Koehler AB, Ord JK, Snyder RD. Forecasting with Exponential Smoothing: the State Space Approach. Springer Science & Business Media; 2008.
12. Box GEP, Jenkins GM, Reinsel GC, Ljung GM. Time Series Analysis: Forecasting and Control. 5th ed. John Wiley & Sons; 2015.
13. Harvey AC. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge university press; 1989.
14. Chen J, Boccelli DL. Real-time forecasting and visualization toolkit for multi-seasonal time series. Environmental Modelling & Software. 2018;105:244–256. https://doi.org/10.1016/j.envsoft.2018.03.034
15. Zeng Q, Wen H, Huang H, Pei X, Wong SC. Incorporating temporal correlation into a multivariate random parameters Tobit model for modeling crash rate by injury severity. Transportmetrica A: Transport Science. 2018;14(3):177–191. doi: 10.1080/23249935.2017.1353556
16. Wei WS. Time Series Analysis–Univariate and Multivariate Methods. Temple University. USA; 2006.
17. Pedregal DJ, Trapero JR. Mid-term hourly electricity forecasting based on a multi-rate approach. Energy Conversion and Management. 2010;51(1):105–111. https://doi.org/10.1016/j.enconman.2009.08.028
18. Chen F, Chen S, Ma X. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. Journal of Safety Research. 2018;65:153–159. doi: 10.1016/j.jsr.2018.02.010 29776524
19. Ma X, Chen S, Chen F. Multivariate space-time modeling of crash frequencies by injury severity levels. Analytic Methods in Accident Research. 2017;15:29–40. doi: 10.1016/j.amar.2017.06.001
20. Durbin J, Koopman SJ. Time Series Analysis by State Space Methods. 2nd ed. Oxford University Press; 2012.
21. Tsay RS. Time Series Model Specification in the Presence of Outliers. Journal of the American Statistical Association. 1986;81(393):132–141. doi: 10.1080/01621459.1986.10478250
22. Broze L, Mélard G. Exponential smoothing: Estimation by maximum likelihood. Journal of Forecasting. 1990;9(5):445–455. doi: 10.1002/for.3980090504
23. Lilliefors HW. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association. 1967;62(318):399–402. doi: 10.1080/01621459.1967.10482916
24. Bera AK, Jarque CM. Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo Evidence. Economics Letters. 1981;7(4):313–318. https://doi.org/10.1016/0165-1765(81)90035-5
25. Ljung GM, Box GEP. On a measure of lack of fit in time series models. Biometrika. 1978;65(2):297–303. doi: 10.1093/biomet/65.2.297
26. Monti AC. A Proposal for a Residual Autocorrelation Test in Linear Models. Biometrika. 1994;81(4):776–780. doi: 10.1093/biomet/81.4.776
27. Akaike H. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control. 1974;19:716–723. doi: 10.1109/TAC.1974.1100705
28. Schwarz GE. Estimating the Dimension of a Model. Annals of Statistics. 1978;6:461–464. doi: 10.1214/aos/1176344136
29. Hannan EJ, Quinn BG. The Determination of the order of an autoregression. Journal of the Royal Statistical Society, Series B. 1979;41:190–195.
30. Granger CWJ. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica. 1969;37(3):424–438. doi: 10.2307/1912791
31. Brown RL, J D, M EJ. Techniques for testing the constancy of regression relationships over time (with discussion). Journal of the Royal Statistical Society B. 1975;37:149–192.
32. Box GEP, Cox DR. An Analysis of Transformations. Journal of the Royal Statistical Society Series B (Methodological). 1964;26(2):211–252. doi: 10.1111/j.2517-6161.1964.tb00553.x
33. Guerrero VM. Time series analysis supported by power transformations. Journal of Forecasting. 1993;12(1):37–48. doi: 10.1002/for.3980120104
34. Dickey DA, Fuller WA. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association. 1979;74(366a):427–431. doi: 10.2307/2286348
35. Phillips PCB, Perron P. Testing for a Unit Root in Time Series Regression. Biometrika. 1988;75(2):335–346. doi: 10.1093/biomet/75.2.335
36. Johansen S. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica. 1991;59(6):1551–1580. doi: 10.2307/2938278
37. McLeod AI, K LW. Diagnostic checking ARMA time series models using squared residual autocorrelations. Journal of Time Series Analysis. 1983;4:269–273. doi: 10.1111/j.1467-9892.1983.tb00373.x
38. Peña D, Rodriguez J. Detecting nonlinearity in time series by model selection criteria. International Journal of Forecasting. 2005;21(4):731–748. https://doi.org/10.1016/j.ijforecast.2005.04.014
39. Tsay RS. Nonlinearity tests for time series. Biometrika. 1986;73(2):461–466. doi: 10.1093/biomet/73.2.461
40. Young PC, Pedregal DJ, Tych W. Dynamic Harmonic Regression. Journal of Forecasting. 1999;18(6):369–394. doi: 10.1002/(SICI)1099-131X(199911)18:6%3C369::AID-FOR748%3E3.0.CO;2-K
41. Diebold FX, Mariano RS. Comparing Predictive Accuracy. Journal of Business & Economic Statistics. 1995;13(3):253–263. doi: 10.1080/07350015.1995.10524599
42. Wilcoxon F. Individual Comparisons by Ranking Methods. Biometrics Bulletin. 1945;1(6):80–83. doi: 10.2307/3001968
43. Makridakis S, Hibon M. The M3-competition: results, conclusions and implications. International Journal of Forecasting. 2000;16(4):451–476. doi: 10.1016/S0169-2070(00)00057-1
44. Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. International Journal of Forecasting. 2006;22(4):679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Nejasný stín na plicích – kazuistika
- Ne každé mimoděložní těhotenství musí končit salpingektomií
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis