#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Prosthesis design of animal models of periprosthetic joint infection following total knee arthroplasty: A systematic review


Autoři: Ke Jie aff001;  Peng Deng aff001;  Houran Cao aff001;  Wenjun Feng aff002;  Jinlun Chen aff002;  Yirong Zeng aff002
Působiště autorů: The First Clinical Medical College, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China aff001;  The Third Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223402

Souhrn

Background

The number of periprosthetic joint infections (PJI) after total knee arthroplasty (TKA) is increasing annually. Animal models have been used to clarify their clinical characteristics and the infection mechanism of pathogenic bacteria, However, since the prosthesis design of animal models is not uniform, it is difficult to simulate the environment of clinical PJI.

Objectives

To retrospect the progress on the prosthesis design of animal models of PJI after TKA and to summarize the criteria for evaluating a clinically representative model of PJI.

Methods

This systematic review was reported on the basis of Systematic Reviews and Meta-Analyzes (PRISMA). Pubmed, EMbase, Cochrane Library, Web of Science, Wanfang Data and China National Knowledge Infrastructure were researched for animal models of PJI after TKA from database establishment to April 2019 according to Chinese and English retrieval words, including “periprosthetic joint infections and total knee arthroplasty,” “periprosthetic joint infections and model,” “periprosthetic joint infections and biofilm,” and “total knee arthroplasty and model.”

Results

A total of 12 quantitative studies were enrolled in our study finally: 8 representative studies described prosthesis designs used in PJI animal models, 4 studies described prosthesis designs in non-infected animal models which were suitable for infection models. The major problems need to be dealed with were prosthesis, installation location, material, the function of separating the articular and medullary cavity, fixation manner, and the procedure of preserving the posterior cruciate ligament.

Conclusion

A highly representative design of the animal prosthesis of PJI should meet the following criteria: the surface of the prosthesis is smooth with the formation of biofilm, composed of titanium-6Al-4V or cobalt-chromium-molybdenum alloy; prosthesis can bear weight and is highly stable; and it can connect the joint cavity and medullary cavity simultaneously. To reach a more reliable conclusion, further experiments and improvements are required.

Klíčová slova:

Animal models – Medical implants – Knee joints – Rabbits – Prosthetics – Ligaments – Animal models of infection – Total knee arthroplasty


Zdroje

1. Srivastava K, Bozic KJ, Silverton C, Nelson AJ, Makhni EC, Davis JJJ. Reconsidering Strategies for Managing Chronic Periprosthetic Joint Infection in Total Knee Arthroplasty: Using Decision Analytics to Find the Optimal Strategy Between One-Stage and Two-Stage Total Knee Revision. JBJS. 2019;101(1):14–24. doi: 10.2106/JBJS.17.00874. 30601412.

2. Preobrazhensky PM, Bozhkova SA, Kazemirsky AV, Tikhilov RM, Kulaba TA, Kornilov NNJ. Functional outcome of two-stage reimplantation in patients with periprosthetic joint infection after primary total knee arthroplasty. International orthopaedics. 2019:1–7. doi: 10.1007/s00264-018-4276-1. 30652221.

3. Koh CK, Zeng I, Ravi S, Zhu M, Vince KG, Young SWJ. Periprosthetic joint infection is the main cause of failure for modern knee arthroplasty: an analysis of 11,134 knees. Clinical Orthopaedics Related Research. 2017;475(9):2194–201. doi: 10.1007/s11999-017-5396-4 28573549.

4. Kurtz SM, Ong KL, Lau E, Bozic KJ, Berry D, Parvizi JJ. Prosthetic joint infection risk after TKA in the Medicare population. Clinical Orthopaedics Related Research. 2010;468(1):52–6. doi: 10.1007/s11999-009-1013-5 19669386.

5. Baumbach SF, Prall WC, Scharpf AM, Hererich V, Schmidt M, Suedkamp NP, et al. Significant increase of pathogen detection rate by dry arthroscopic biopsies at suspected low-grade infection following total knee arthroplasty: a prospective observational study. Archives of orthopaedic trauma surgery. 2018;138(11):1583–90. doi: 10.1007/s00402-018-3032-8 30182141.

6. Gwam CU, George NE, Etcheson JI, Tarazi JM, Han G-r, Griffith KM, et al. Clostridium difficile infection in the USA: incidence and associated factors in revision total knee arthroplasty patients. European Journal of Orthopaedic Surgery Traumatology. 2019;29(3):667–74. doi: 10.1007/s00590-018-2319-3 30350019.

7. Lee YS, Chen AFJ. Two-Stage Reimplantation in Infected Total Knee Arthroplasty. Knee surgery related research. 2018;30(2):107. doi: 10.5792/ksrr.17.095 29843197.

8. Wang F-D, Wang Y-P, Chen C-F, Chen H-PJ. The incidence rate, trend and microbiological aetiology of prosthetic joint infection after total knee arthroplasty: A 13 years’ experience from a tertiary medical center in Taiwan. Journal of Microbiology, Immunology and Infection. 2018;51(6):717–22. doi: 10.1016/j.jmii.2018.08.011 30228089.

9. Petis SM, Perry KI, Mabry TM, Hanssen AD, Berry DJ, Abdel MPJ. Two-Stage Exchange Protocol for Periprosthetic Joint Infection Following Total Knee Arthroplasty in 245 Knees without Prior Treatment for Infection. JBJS. 2019;101(3):239–49. doi: 10.2106/JBJS.18.00356 30730483.

10. Siu K, Ng F, Chan P, Fu HC, Yan C, Chiu KJ. Bacteriology and risk factors associated with periprosthetic joint infection after primary total knee arthroplasty: retrospective study of 2543 cases. Hong Kong Med J. 2018;24(2):152–7. doi: 10.12809/hkmj176885 29658483.

11. Yaghmour KM, Chisari E, Khan WSJ. Single-Stage Revision Surgery in Infected Total Knee Arthroplasty: A PRISMA Systematic Review. Journal of clinical medicine. 2019;8(2):174. doi: 10.3390/jcm8020174 30717420.

12. Kim J-K, Lee D-Y, Kang D-W, Ro D-H, Lee MC, Han H-SJ. Efficacy of antifungal-impregnated cement spacer against chronic fungal periprosthetic joint infections after total knee arthroplasty. The Knee. 2018;25(4):631–7. doi: 10.1016/j.knee.2018.04.004 29778657.

13. Kim K, Zhu M, Cavadino A, Munro JT, Young SWJ. Failed Debridement and Implant Retention Does Not Compromise the Success of Subsequent Staged Revision in Infected Total Knee Arthroplasty. The Journal of arthroplasty. 2019. doi: 10.1016/j.arth.2019.01.066 30826164.

14. Bernthal NM, Stavrakis AI, Billi F, Cho JS, Kremen TJ, Simon SI, et al. A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PloS one. 2010;5(9):e12580. doi: 10.1371/journal.pone.0012580 20830204.

15. Carli AV, Bhimani S, Yang X, Shirley MB, de Mesy Bentley KL, Ross FP, et al. Quantification of peri-implant bacterial load and in vivo biofilm formation in an innovative, clinically representative mouse model of periprosthetic joint infection. doi: 10.2106/JBJS.16.00815 28291188. 2017;99(6):e25. 28291188.

16. Craig MR, Poelstra KA, Sherrell JC, Kwon MS, Belzile EL, Brown TEJ. A novel total knee arthroplasty infection model in rabbits. Journal of orthopaedic research. 2005;23(5):1100–4. doi: 10.1016/j.orthres.2005.03.007 15927441.

17. Hegde V, Dworsky EM, Stavrakis AI, Loftin AH, Zoller SD, Park HY, et al. Single-dose, preoperative vitamin-D supplementation decreases infection in a mouse model of periprosthetic joint infection. JBJS. 2017;99(20):1737–44. doi: 10.2106/JBJS.16.01598 29040128.

18. Heim CE, Vidlak D, Scherr TD, Hartman CW, Garvin KL, Kielian TJ. IL-12 promotes myeloid-derived suppressor cell recruitment and bacterial persistence during Staphylococcus aureus orthopedic implant infection. The Journal of Immunology. 2015;194(8):3861–72. doi: 10.4049/jimmunol.1402689 25762781.

19. Turner TM, Urban RM, Sumner DR, Skipor AK, Galante JOJ. Bone ingrowth into the tibial component of a canine total condylar knee replacement prosthesis. Journal of Orthopaedic Research. 1989;7(6):893–901. doi: 10.1002/jor.1100070616 2677286.

20. Vidlak D, Kielian TJ. Infectious dose dictates the host response during Staphylococcus aureus orthopedic-implant biofilm infection. Infection and immunity. 2016;84(7):1957–65. doi: 10.1128/IAI.00117-16 27091926.

21. Wang Y, Thompson JM, Ashbaugh AG, Khodakivskyi P, Budin G, Sinisi R, et al. Preclinical evaluation of photoacoustic imaging as a novel noninvasive approach to detect an orthopaedic implant infection. The Journal of the American Academy of Orthopaedic Surgeons. 2017;25(Suppl 1):S7. doi: 10.5435/JAAOS-D-16-00630 27941556.

22. Zhi-Qiang Y LZ, Xin-Liang W, et al. The design of anatomic knee prostheses for rabbits with computer aided design. Guangdong Medical Journal. 2014;35(13):1997–2001.

23. Malhotra R, Dhawan B, Garg B, Shankar V, Nag TCJ. A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: An In vitro study. Indian journal of orthopaedics. 2019;53(1):148. doi: 10.4103/ortho.IJOrtho_66_18 30905995.

24. Ricciardi BF, Muthukrishnan G, Masters E, Ninomiya M, Lee CC, Schwarz EMJ. Staphylococcus aureus evasion of host immunity in the setting of prosthetic joint infection: biofilm and beyond. Current Reviews in Musculoskeletal Medicine. 2018;11(3):389–400. doi: 10.1007/s12178-018-9501-4 29987645.

25. Carli AV, Ross FP, Bhimani SJ, Nodzo SR, Bostrom MPJ. Developing a clinically representative model of periprosthetic joint infection. JBJS. 2016;98(19):1666–76. doi: 10.2106/JBJS.15.01432 27707853.

26. Liu Y, Tay JHJ. Metabolic response of biofilm to shear stress in fixed‐film culture. Journal of applied microbiology. 2001;90(3):337–42. doi: 10.1046/j.1365-2672.2001.01244.x 11298227.

27. Singh AV, Vyas V, Patil R, Sharma V, Scopelliti PE, Bongiorno G, et al. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PloS one. 2011;6(9):e25029. doi: 10.1371/journal.pone.0025029 21966403.

28. Conditt MA, Noble PC, Bertolusso R, Woody J, Parsley BSJ. The PCL significantly affects the functional outcome of total knee arthroplasty. The Journal of arthroplasty. 2004;19(7):107–12. doi: 10.1016/j.arth.2004.06.006 15457428.

29. Teughels W, Van Assche N, Sliepen I, Quirynen MJ. Effect of material characteristics and/or surface topography on biofilm development. Clinical oral implants research. 2006;17(S2):68–81. doi: 10.1111/j.1600-0501.2006.01353.x 16968383.

30. Saleh-Mghir A, Muller-Serieys C, Dinh A, Massias L, Crémieux A-CJ. Adjunctive rifampin is crucial to optimizing daptomycin efficacy against rabbit prosthetic joint infection due to methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2011;55(10):4589–93. doi: 10.1128/AAC.00675-11 21825285.

31. Bargon R, J, Carli A, Fabritius M, Goel R, Goswami K, et al. General Assembly, Research Caveats: Proceedings of International Consensus on Orthopedic Infections. The Journal of arthroplasty. 2019;34(2S):S245. doi: 10.1016/j.arth.2018.09.076 30348560.

32. Moher D, Liberati A, Tetzlaff J, Altman DGJ. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine. 2009;151(4):264–9. doi: 10.7326/0003-4819-151-4-200908180-00135 19622511.

33. Stroke TAIRSJ. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30(12):2752. doi: 10.1161/01.str.30.12.2752 10583007.

34. Poultsides LA, Papatheodorou LK, Karachalios TS, Khaldi L, Maniatis A, Petinaki E, et al. Novel model for studying hematogenous infection in an experimental setting of implant‐related infection by a community‐acquired methicillin‐resistant S. aureus Strain. Journal of Orthopaedic Research. 2008;26(10):1355–62. doi: 10.1002/jor.20608 18425805.

35. Yang X, Ricciardi BF, Dvorzhinskiy A, Brial C, Lane Z, Bhimani S, et al. Intermittent parathyroid hormone enhances cancellous osseointegration of a novel murine tibial implant. The Journal of bone joint surgery American volume. 2015;97(13):1074. doi: 10.2106/JBJS.N.01052 26135074.

36. Zampelis V, Tägil M, Lidgren L, Isaksson H, Atroshi I, Wang J-SJ. The effect of a biphasic injectable bone substitute on the interface strength in a rabbit knee prosthesis model. Journal of orthopaedic surgery research. 2013;8(1):25. doi: 10.1186/1749-799X-8-25 23899023.

37. Kalteis T, Beckmann J, Schröder H-J, Schaumburger J, Linde H-J, Lerch K, et al. Treatment of implant-associated infections with moxifloxacin: an animal study. International journal of antimicrobial agents. 2006;27(5):444–8. doi: 10.1016/j.ijantimicag.2005.12.003 16621461.

38. Petty W, Spanier S, Shuster J, Silverthorne CJ. The influence of skeletal implants on incidence of infection. Experiments in a canine model. The Journal of bone & joint surgery American volume. 1985;67(8):1236–44. 3902846.

39. Schurman DJ, Johnson B Jr, Amstutz HJ. Knee joint infections with Staphylococcus aureus and Micrococcus species. 1123370. 1975;57(1):40–9.

40. Kussmann M, Obermueller M, Berndl F, Reischer V, Veletzky L, Burgmann H, et al. Dalbavancin for treatment of implant-related methicillin-resistant Staphylococcus aureus osteomyelitis in an experimental rat model. Scientific reports. 2018;8(1):9661. doi: 10.1038/s41598-018-28006-8 29941909

41. Lankinen P, Lehtimäki K, Hakanen AJ, Roivainen A, Aro HTJ. A comparative 18 F-FDG PET/CT imaging of experimental Staphylococcus aureus osteomyelitis and Staphylococcus epidermidis foreign-body-associated infection in the rabbit tibia. EJNMMI research. 2012;2(1):41. doi: 10.1186/2191-219X-2-41 22824200.

42. Edelstein AI, Weiner JA, Cook RW, Chun DS, Monroe E, Mitchell SM, et al. Intra-articular vancomycin powder eliminates methicillin-resistant S. aureus in a rat model of a contaminated intra-articular implant. JBJS. 2017;99(3):232–8. doi: 10.2106/JBJS.16.00127 28145954

43. Wijeyekoon S, Mino T, Satoh H, Matsuo TJ. Effects of substrate loading rate on biofilm structure. Water Research. 2004;38(10):2479–88. doi: 10.1016/j.watres.2004.03.005 15159151.

44. Zhai H, Pan J, Pang E, Bai BJ. Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection. PLoS One. 2014;9(7):e102760. doi: 10.1371/journal.pone.0102760 25025650.

45. Gatin L, Saleh-Mghir A, Tasse J, Ghout I, Laurent F, Crémieux A-CJ. Ceftaroline-Fosamil efficacy against methicillin-resistant Staphylococcus aureus in a rabbit prosthetic joint infection model. Antimicrobial agents and chemotherapy. 2014;58(11):6496–500. doi: 10.1128/AAC.03600-14 25136014

46. Sarda L, Saleh-Mghir A, Peker C, Meulemans A, Crémieux A-C, Le Guludec DJ. Evaluation of 99mTc-ciprofloxacin scintigraphy in a rabbit model of Staphylococcus aureus prosthetic joint infection. Journal of Nuclear Medicine. 2002;43(2):239–45. 11850491

47. Abu-Amer Y, Darwech I, Clohisy JCJ. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis research & therapy. 2007;9(1):S6. doi: 10.1186/ar2170 17634145

48. Crook PD, Owen JR, Hess SR, Al-Humadi SM, Wayne JS, Jiranek WAJTJoa. Initial stability of cemented vs cementless tibial components under cyclic load. 2017;32(8):2556–62. doi: 10.1016/j.arth.2017.03.039 28433426.

49. Harwin SF, Kester MA, Malkani AL, Manley MTJ. Excellent fixation achieved with cementless posteriorly stabilized total knee arthroplasty. The Journal of arthroplasty. 2013;28(1):7–13. doi: 10.1016/j.arth.2012.06.006 22854342.

50. Park J-W, Kim Y-HJ. Simultaneous cemented and cementless total knee replacement in the same patients: a prospective comparison of long-term outcomes using an identical design of NexGen prosthesis. The Journal of bone joint surgery British volume. 2011;93(11):1479–86. doi: 10.1302/0301-620X.93B11.27507 22058298.

51. Kendall RW, Duncan CP, Smith JA, Ngui-Yen JHJ. Persistence of bacteria on antibiotic loaded acrylic depots: a reason for caution. Clinical Orthopaedics & Related Research. 1996;329:273–80. doi: 10.1097/00003086-199608000-00034 8769462.

52. Aalirezaie A, Abolghasemian M, Busato T, Dennis D, Ghazavi M, Holst DC, et al. Hip and Knee Section, Treatment, Two-Stage Exchange: Proceedings of International Consensus on Orthopedic Infections. The Journal of arthroplasty. 2019;34(2S):S439. doi: 10.1016/j.arth.2018.09.028 30348583.

53. Carli AV, Bhimani S, Yang X, de Mesy Bentley KL, Ross FP, Bostrom MPJ. Vancomycin-Loaded Polymethylmethacrylate Spacers Fail to Eradicate Periprosthetic Joint Infection in a Clinically Representative Mouse Model. JBJS. 2018;100(11):e76. doi: 10.2106/JBJS.17.01100 29870449.

54. Sorlí L, Puig L, Torres-Claramunt R, González A, Alier A, Knobel H, et al. The relationship between microbiology results in the second of a two-stage exchange procedure using cement spacers and the outcome after revision total joint replacement for infection: the use of sonication to aid bacteriological analysis. The Journal of bone joint surgery British volume. 2012;94(2):249–53. doi: 10.1302/0301-620X.94B2.27779 22323695.

55. Sabanci SS, Ocal MKJ. Comparison of goniometric measurements of the stifle joint in seven breeds of normal dogs. Vet Comp Orthop Traumatol. 2016;29(03):214–9. doi: 10.3415/VCOT-15-05-0090 26898480.

56. Tomlinson J, Fox D, Cook JL, Keller GGJ. Measurement of femoral angles in four dog breeds. Veterinary Surgery. 2007;36(6):593–8. doi: 10.1111/j.1532-950X.2007.00309.x 17686134.

57. Watson C, Rochat M, Payton MJ. Effect of weight bearing on the joint angles of the fore-and hind limb of the dog. Veterinary and Comparative Orthopaedics and Traumatology. 2003;16(04):250–4.

58. Thomas TM, Marcellin-Little DJ, Roe SC, Lascelles BDX, Brosey BPJ. Comparison of measurements obtained by use of an electrogoniometer and a universal plastic goniometer for the assessment of joint motion in dogs. American journal of veterinary research. 2006;67(12):1974–9. doi: 10.2460/ajvr.67.12.1974 17144796.

59. Maeda E, Noguchi H, Tohyama H, Yasuda K, Hayashi KJ. Biomechanical study of healing of patellar tendon after resection of the central one-third in an adult-mature rabbit model. Bio-medical materials and engineering. 2013;23(3):173–81. doi: 10.3233/BME-130742 23629531.

60. Spekenbrink-Spooren A, Van Steenbergen LN, Denissen GA, Swierstra BA, Poolman RW, Nelissen RGJ. Higher mid-term revision rates of posterior stabilized compared with cruciate retaining total knee arthroplasties: 133,841 cemented arthroplasties for osteoarthritis in the Netherlands in 2007–2016. Acta orthopaedica. 2018;89(6):640–5. doi: 10.1080/17453674.2018.1518570 30350747.

61. Kolisek FR, McGrath MS, Marker DR, Jessup N, Seyler TM, Mont MA, et al. Posterior-stabilized versus posterior cruciate ligament-retaining total knee arthroplasty. The Iowa orthopaedic journal. 2009;29:23. 19742081

62. Karbysheva S, Grigoricheva L, Golnik V, Popov S, Renz N, Trampuz AJ. Influence of retrieved hip-and knee-prosthesis biomaterials on microbial detection by sonication. European cells materials. 2019;37:16–22. doi: 10.22203/eCM.v037a02 30644078.


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#