Congenital Zika Syndrome in a Brazil-Paraguay-Bolivia border region: Clinical features of cases diagnosed between 2015 and 2018
Autoři:
Fabio Antonio Venancio aff001; Maria Eulina Quilião Bernal aff002; Maria da Conceição de Barros Vieira Ramos aff003; Neuma Rocha Chaves aff003; Marcos Vinicius Hendges aff004; Mattheus Marques Rodrigues de Souza aff004; Márcio José de Medeiros aff005; Cláudia Du Bocage Santos Pinto aff006; Everton Falcão de Oliveira aff001
Působiště autorů:
Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
aff001; Centro Especializado em Reabilitação, Associação de Pais e Amigos dos Excepcionais, Campo Grande, Brasil
aff002; Coordenadoria de Vigilância Epidemiológica, Secretaria Municipal de Saúde Pública de Campo Grande, Campo Grande, Brasil
aff003; Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
aff004; Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brasil
aff005; Instituto Integrado de Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil
aff006
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223408
Souhrn
Congenital Zika Syndrome (CZS) is a unique pattern of congenital abnormalities found in fetuses and neonates infected with the Zika virus (ZIKV). Here, we clinically identify and characterize infants with CZS between 2015 and 2018 in Mato Grosso do Sul, Brazil—a border area with Paraguay and Bolivia. This cross-sectional study, based on primary and secondary data, tracks the cases registered in the Brazilian Public Health Reporting System through the following stages: (1) preliminary data analysis, (2) identification of the congenital syndrome cases, (3) etiologic classification of the cases, (4) active search, and (5) clinical assessment. Of the 72 investigated cases, 16 were probable cases of CZS. Of these, it was only possible to clinically assess 11 infants. Considering the 16 probable cases of CZS, nine were classified as confirmed cases, and five as potential cases of the syndrome. Regarding clinical features, brain palsy was identified in all analyzed infants. Moreover, microcephaly and pseudobulbar syndrome were found in eight infants, and hydrocephalus was found in three individuals. In addition to these conditions, seven children were malnourished. Our study may provide significant insights for other researches that aim to elucidate CZS and its clinical and populational consequences.
Klíčová slova:
Pregnancy – Brazil – Reverse transcriptase-polymerase chain reaction – Infants – Microcephaly – Zika virus – Zika fever – Congenital anomalies
Zdroje
1. Plourde AR, Bloch EM. A literature review of zika virus. Emerg Infect Dis. 2016; 22(7): 1185–1192. doi: 10.3201/eid2207.151990 27070380
2. Campos GS, Bandeira AC, Sardi SI. Zika virus outbreak, Bahia, Brazil. Emerg Infect Dis. 2015 Oct; 21(10):1885–6. doi: 10.3201/eid2110.150847 26401719
3. Brasil. Ministério da Saúde. Monitoramento dos casos de dengue, febre de chikungunya e doença aguda pelo vírus Zika até a Semana Epidemiológica 45 de 2018. Boletim Epidemiológico 53, vol. 49, 2018. Brasília, 2018. Available from: http://http://portalarquivos2.saude.gov.br/images/pdf/2019/janeiro/14/BE-Vol.%2049%20-%20N%C2%BA%2053,%202018%20-20dengue%20chikungunya%20zika_aed_10jan19.pdf.
4. Schuler-Faccini L. Possible association between Zika virus infection and microcephaly–Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016 Jan 29; 65:59–62. doi: 10.15585/mmwr.mm6503e2 26820244
5. Martines RB. Notes from the field: evidence of Zika virus infection in brain and placental tissues from two congenitally infected newborns and two fetal losses–Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016 Feb 19; 65:159–160. doi: 10.15585/mmwr.mm6506e1 26890059
6. Atif M, Azeem M, Sarwar MR, Bashir A. Zika virus disease: a current review of the literature. Infection, 2016 Dec; 44(6): 695–705. doi: 10.1007/s15010-016-0935-6 27510169
7. CDC–Centers for Disease Control and Prevention. CDC Concludes Zika Causes Microcephaly and Other Birth Defects. Update in: 13 apr, 2016. Available from: https://www.cdc.gov/media/releases/2016/s0413-zika-microcephaly.html.
8. Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, Da Fonseca EB, et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 2017 Mar 1; 171(3): 288–295. doi: 10.1001/jamapediatrics.2016.3982 27812690
9. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Secretaria de Atenção à Saúde. Orientações integradas de vigilância e atenção à saúde no âmbito da Emergência de Saúde Pública de Importância Nacional: procedimentos para o monitoramento das alterações no crescimento e desenvolvimento a partir da gestação até a primeira infância, relacionadas à infecção pelo vírus Zika e outras etiologias infeciosas dentro da capacidade operacional do SUS. Brasília, 2017. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/orientacoes_integradas_vigilancia_atencao_emergencia_saude_publica.pdf.
10. Van Der Linden V, Rolim Filho EL, Lins OG, Van Der Linden A, Aragão MDFVV, Brainer-Lima AM, et al. Congenital Zika syndrome with arthrogryposis: retrospective case series study. BMJ. 2016 Aug 9; 354:i3899. doi: 10.1136/bmj.i3899 27509902
11. Brasil. Portaria n° 1.813, de 11 de novembro de 2015. Declara Emergência em Saúde Pública de importância Nacional (ESPIN) por alteração do padrão de ocorrência de microcefalias no Brasil. Diário Oficial da República Federativa do Brasil, Ministério da Saúde, Brasília, DF, 12 nov. 2015. Seção 1, p 51. Available from: http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=12/11/2015&jornal=1&pagina=51&totalArquivos=120. >
12. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Protocolo de vigilância e resposta à ocorrência de microcefalia e/ou alterações do sistema nervoso central (SNC). 2015. Available from: http://portalarquivos2.saude.gov.br/images/pdf/2015/dezembro/09/Microcefalia—Protocolo-de-vigil—ncia-e-resposta—vers—o-1—-09dez2015-8h.pdf
13. Instituto Brasileiro de Geografia e Estatística. Panorama, Mato Grosso do Sul. Available from: https://cidades.ibge.gov.br/brasil/ms/panorama.
14. Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Diretrizes de Estimulação Precoce: crianças de zero a 3 anos com atraso no desenvolvimento neuropsicomotor. Brasília, 2016b. Available from: http://portalarquivos2.saude.gov.br/images/pdf/2016/janeiro/13/Diretrizes-de-EstimulacaoPrecoce.pdf.
15. WHO–World Health Organization. Multicentre Growth Reference Study Group. Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl. 2006 Apr; 450: 76–85. 16817681
16. Cabral CM, Nóbrega MEB, Leite PL, Souza MSF, Teixeira DCP, Cavalvante TF, et al. Clinical-epidemiological description of live births with microcephaly in the state of Sergipe, Brazil, 2015. Epidemiol. Serv. Saúde. 2017 Apr-Jun; 26(2): 245–254 doi: 10.5123/S1679-49742017000200002 28492766
17. França GVAD, Pedi VD, Garcia MHDO, Carmo GMID, Leal MB, Garcia LP. Congenital syndrome associated with Zika virus infection among live births in Brazil: a description of the distribution of reported and confirmed cases in 2015–2016. Epidemiol. Serv. Saúde. 2018 Jul 2;27(2): e2017473. doi: 10.5123/S1679-49742018000200014 29972474
18. Martins RS, Fróes MH, Saad LDC, Ignácio Junior SM, Prado WDA, Figueiredo EMD, et al. Descriptive report of cases of congenital syndrome associated with Zika virus infection in the state of São Paulo, Brazil, from 2015 to 2017. Epidemiol. Serv. Saúde. 2018; 27(3): e2017382. doi: 10.5123/S1679-49742018000300012 30365699
19. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Monitoramento integrado de alterações no crescimento e desenvolvimento relacionadas à infecção pelo vírus Zika e outras etiologias infecciosas, até a Semana Epidemiológica 52/2018. Boletim Epidemiológico. 2019; 50(08). Available from: http://portalarquivos2.saude.gov.br/images/pdf/2019/marco/22/2019-001.pdf.
20. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Situação epidemiológica da infecção pelo vírus Zika no Brasil, de 2015 a 2017. Boletim Epidemiológico. 2018; 49 (47). Available from: https://portalarquivos2.saude.gov.br/images/pdf/2018/novembro/12/2018-034.pdf
21. Brasil. Secretaria de Vigilância em Saúde. Departamento de informação e análise epidemiológica. Painel de monitoramento de nascidos vivos [internet]. Brasília, c2013 [updated in 2019 apr 1; access in 2019 jan 30]. Available from: http://svs.aids.gov.br/dantps/centrais-de-conteudos/paineis-de-monitoramento/natalidade/nascidos-vivos/
22. Rio de Janeiro. Secretaria de Estado de Saúde do Rio de Janeiro. Centro de Informações Estratégicas de Vigilância em Saúde/Unidade de Resposta Rápida (CIEVS). Informativo CIEVS 012/2019. Rio de Janeiro, 2019 [access in 2019 aug 30]. Available from: www.riocomsaude.rj.gov.br/Publico/MostrarArquivo.aspx?C=auTOApl1zz8%3d
23. Boppana SB, Ross SA, Fowler KB. Congenital cytomegalovirus infection: clinical outcome. Clin Infect Dis. 2013 Dec; 57 Suppl 4:S178–81.
24. Bischoff AR, Friedrich L, Cattan JM. Incidence of symptomatic congenital toxoplasmosis during ten years in a brazilian hospital. Pediatr Infect Dis J. 2016 Dec; 35(12): 1313–1316. doi: 10.1097/INF.0000000000001307 27455439
25. Adibi JJ, Marques ET Jr, Cartus A, Beigi RH. Teratogenic effects of the Zika virus and the role of the placenta. Lancet. 2016 Apr 9; 387(10027): 1587–90. doi: 10.1016/S0140-6736(16)00650-4 26952548
26. Van Der Linden V, Linden HVD Junior, Leal MDC, Rolim Filho EL, Linden AVD, Aragão MDFVV, et al. Discordant clinical outcomes of congenital Zika virus infection in twin pregnancies. Arq Neuropsiquiatr. 2017 Jun; 75 (6): 381–386. doi: 10.1590/0004-282X20170066 28658408
27. Hirsch AJ, Roberts VH, Grigsby PL, Haese N, Schabel MC, Wang X, et al. Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nat Commun. 2018 Jan 17; 9 (1), 263. doi: 10.1038/s41467-017-02499-9 29343712
28. Whitehead SS, Pierson TC. Effects of dengue immunity on Zika virus infection. Nature. 2019 Mar;567(7749):467–468. doi: 10.1038/d41586-019-00868-6 30911157
29. Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C, Fang-Hoover J, Harris E, Pereira L. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe. 2016 Aug 10; 20(2), 155–166. doi: 10.1016/j.chom.2016.07.002 27443522
30. Calvet G, Aguiar RS, Melo AS, Sampaio SA, De Filippis I, Fabri A, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis. 2016 jun 17; 16(6), 653–660. doi: 10.1016/S1473-3099(16)00095-5 26897108
31. Noronha LD, Zanluca C, Burger M, Suzukawa AA, Azevedo M, Rebutini P, et al. Zika virus infection at different pregnancy stages: anatomopathological findings, target cells and viral persistence in placental tissues. Front Microbiol. 2018 Sep 25; 9, 2266. doi: 10.3389/fmicb.2018.02266 30337910
32. Aagaard KM, Lahon A, Suter MA, Arya RP, Seferovic MD, Vogt MB et al. Primary human placental trophoblasts are permissive for Zika virus (ZIKV) replication. Sci Rep 2017 Jan 27; 7, 41389. doi: 10.1038/srep41389 28128342
33. Rodriguez-Barraquer I, Costa F, Nascimento EJ, Nery N, Castanha PM, Sacramento GA et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science. 2019 Feb 8; 363 (6427), 607–610. doi: 10.1126/science.aav6618 30733412
34. Gordon A, Gresh L, Ojeda S, Katzelnick LC, Sanchez N, Mercado JC, et al. Prior dengue virus infection and risk of Zika: A pediatric cohort in Nicaragua. PLoS Med. 2019 Jan 22; 16 (1), e1002726. doi: 10.1371/journal.pmed.1002726 30668565
35. Zimmerman MG, Quicke KM, O'Neal JT, Arora N, Machiah D, Priyamvada L, et al. Cross-reactive dengue virus antibodies augment Zika virus infection of human placental macrophages. Cell Host Microbe. 2018 Nov 14; 24 (5), 731–742. doi: 10.1016/j.chom.2018.10.008 30439342
36. Brown JA, Singh G, Acklin JA, Lee S, Duehr JE, Chokola NA, et al. Dengue virus immunity increases Zika virus-induced damage during pregnancy. Immunity. 2019 Mar 19; 50 (3), 751–762. doi: 10.1016/j.immuni.2019.01.005 30737148
37. Pedrosa CSG, Souza LR., Lima CVF, Ledur PF, Karmirian, K., Gomes TA, et al. The cyanobacterial saxitoxin exacerbates neural cell death and brain malformations induced by Zika virus. BioRxiv [Preprint]. 2019 bioRxiv755066 [posted 2019 Sep 4]. Available from: https://www.biorxiv.org/content/10.1101/755066v1
38. Brady OJ, Osgood-Zimmerman A, Kassebaum NJ, Ray SE, de Araújo VE, da Nóbrega AA, et al. The association between Zika virus infection and microcephaly in Brazil 2015–2017: An observational analysis of over 4 million births. PLoS med. 2019 Mar 5, 16(3): e1002755. doi: 10.1371/journal.pmed.1002755 30835728
39. Brasil P, Pereira JP, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016 Dec 15; 375(24): 2321–2334. doi: 10.1056/NEJMoa1602412 26943629
40. Da Silva AAM, Ganz JSS, Sousa OS, Doriqui MJR, Ribeiro MRC, Branco MDRFC, et al. Early growth and neurologic outcomes of infants with probable congenital Zika virus syndrome. Emerg Infect Dis. 2016 Nov; 22(11): 1953–1956. doi: 10.3201/eid2211.160956 27767931
41. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 2016 Jun 9; 534(7606): 267–271. doi: 10.1038/nature18296 27279226
42. Zanluca C, Melo VCAD, Mosimann ALP, Santos GIVD, Santos CNDD, Luz K. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz. 2015 Jun; 110(4): 569–572. doi: 10.1590/0074-02760150192 26061233
43. Van Der Linden V, De Lima Petribu NC, Pessoa A, Faquini I, Paciorkowski AR, Van Der Linden H, et al. Association of severe hydrocephalus with congenital Zika syndrome. Jama Neurology. 2019 Nov 19; 76(2): 203–210. doi: 10.1001/jamaneurol.2018.3553 30452526
44. Adams RD, Victor M, Ropper AH, Daroff RB. Principles of neurology. 6. ed. New York: McGraw-Hill, 1997.
45. Leal MC, Van Der Linden V, Bezerra TP, de Valois L, Borges AC, Antunes MM, et al. Characteristics of dysphagia in infants with microcephaly caused by congenital Zika virus infection, Brazil, 2015. Emerg Infect Dis. 2017 Aug; 23(8): 1253–1259. doi: 10.3201/eid2308.170354 28604336
46. Benfer KA, Weir KA, Bell KL, Ware RS, Davies PS, Boyd RN. Oropharyngeal Dysphagia and Gross Motor Skills in Children with Cerebral Palsy. Pediatrics.
47. Bhatnagar J, Rabeneck DB, Martines RB, Reagan-Steiner S, Ermias Y, Estetter LB, Gar YJ. Zika virus RNA replication and persistence in brain and placental tissue. Emerg Infect Dis. 2017; 23(3), p. 405–414. doi: 10.3201/eid2303.161499 27959260
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis