#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Intraregional differences in renal function in the Northern Netherlands: The Lifelines Cohort Study


Autoři: Qingqing Cai aff001;  Louise H. Dekker aff001;  Stephan J. L. Bakker aff001;  Martin H. de Borst aff001;  Gerjan Navis aff001
Působiště autorů: Department of Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands aff001;  Aletta Jacobs School of Public Health, Groningen, The Netherlands aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223908

Souhrn

Background

Although the interregional disparity in chronic kidney disease (CKD) prevalence has been reported globally, little is known about differences in CKD prevalence within a region. We aimed to study the intraregional distribution of renal function in the Northern Netherlands and identify determinants of geographical differences in renal function.

Methods

We included 143,735 participants from the Lifelines population-based cohort in the Northern Netherlands. Spatial analysis was performed to identify regional clusters of lower eGFR (cold spots) and higher eGFR (hot spots) at the postal code level, without and with adjustment for clinical risk factors. Multivariate logistic regression was used to identify the contribution of neighborhood-level health-related behaviors, socioeconomic status, and environmental factors (air pollution parameters, urbanity) to regional clustering of lower eGFR.

Results

Significant spatial clustering of renal function was found for eGFR as well as for early stage renal function impairment (eGFR<90 ml/min/1.73 m2), (p<0.001). Spatial clustering persisted after adjustment of eGFR for clinical risk factors. In adjusted cold spots, the aggregate eGFR was lower (mean ± SD: 96.5±4.8 vs. 98.5±4.0 ml/min/1.73 m2, p = 0.001), and the prevalence of early stage renal function impairment (35.8±10.9 vs. 28.7±9.8%, p<0.001) and CKD stages 3–5 was higher (median (interquartile range): 1.2(0.1–2.4) vs 0(0–1.4)%, p<0.001) than in hot spots. In multivariable logistic regression, exposure to NO2 (Odd ratio [OR], 1.45; 95% confidence interval [95% CI], 1.19 to 1.75, p<0.001) was associated with cold spots (lower renal function), whereas proportion of fat intake in the diet (OR, 0.68; 95%CI, 0.48–0.97, P = 0.031) and income (OR, 0.91; 95%CI, 0.86–0.96, p<0.001) for median level income) were inversely related.

Conclusions

Significant intraregional clustering of renal function, early renal function impairment and CKD were observed in the Northern Netherlands even after adjustment for renal function-related clinical risk factors. Environmental (air pollution), neighborhood-level socioeconomic factors and diet are determinants of intraregional renal function distribution. Spatial analysis might be a useful adjunct to guide public health strategies for the prevention of CKD.

Klíčová slova:

Socioeconomic aspects of health – Schools – Fats – Renal system – Medical risk factors – Chronic kidney disease – Air pollution – Netherlands


Zdroje

1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS One. 2016 Jul 6;11(7):e0158765. doi: 10.1371/journal.pone.0158765 27383068

2. Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015 Nov 1;88(5):950–7. doi: 10.1038/ki.2015.230 26221752

3. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004 Sep 23;351(13):1296–305. doi: 10.1056/NEJMoa041031 15385656

4. Kerr M, Bray B, Medcalf J, O’Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. Nephrol Dial Transplant. 2012 Aug 5;27(suppl_3):iii73–80.

5. Nitsch D, Grams M, Sang Y, Black C, Cirillo M, Djurdjev O, et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ. 2013 Jan 29;346:f324. doi: 10.1136/bmj.f324 23360717

6. Brück K, Stel VS, Gambaro G, Hallan S, Völzke H, Ärnlöv J, et al. CKD Prevalence Varies across the European General Population. J Am Soc Nephrol. 2016 Jul 1;27(7):2135–47. doi: 10.1681/ASN.2015050542 26701975

7. Tanner RM, Gutiérrez OM, Judd S, McClellan W, Bowling CB, Bradbury BD, et al. Geographic variation in CKD prevalence and ESRD incidence in the United States: results from the reasons for geographic and racial differences in stroke (REGARDS) study. Am J Kidney Dis. 2013 Mar 1;61(3):395–403. doi: 10.1053/j.ajkd.2012.10.018 23228944

8. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. The Lancet. 2012 Mar 3;379(9818):815–22.

9. Oakes JM. The (mis) estimation of neighborhood effects: causal inference for a practicable social epidemiology. Soc Sci Med. 2004 May 1;58(10):1929–52. doi: 10.1016/j.socscimed.2003.08.004 15020009

10. Merlo J, Yang M, Chaix B, Lynch J, Rastam L. A brief conceptual tutorial on multilevel analysis in social epidemiology: investigating contextual phenomena in different groups of people. J Epidemiol Community Health. 2005 Sep 1;59(9):729–36. doi: 10.1136/jech.2004.023929 16100308

11. Kind AJH, Buckingham WR. Making Neighborhood-Disadvantage Metrics Accessible—The Neighborhood Atlas. N Engl J Med. 2018 Jun 28;378(26):2456–8 doi: 10.1056/NEJMp1802313 29949490

12. Volkova Nataliya, McClellan William Klein Mitchel, Flanders Dana, Kleinbaum David, et al. Neighborhood poverty and racial differences in ESRD incidence. J Am Soc Nephrol. 2008 Feb 1;19(2):356–64. doi: 10.1681/ASN.2006080934 18057219

13. Link BG, Phelan J. Social conditions as fundamental causes of disease. J Health Soc Behav. 1995 Jan 1:80–94.

14. Scholtens S, Smidt N, Swertz MA, Bakker SJ, Dotinga A, Vonk JM, et al. Cohort Profile: LifeLines, a three-generation cohort study and biobank. Int J Epidemiol. 2014 Dec 14;44(4):1172–80. doi: 10.1093/ije/dyu229 25502107

15. Klijs B, Scholtens S, Mandemakers JJ, Snieder H, Stolk RP, Smidt N. Representativeness of the LifeLines cohort study. PloS one. 2015 Sep 2;10(9):e0137203. doi: 10.1371/journal.pone.0137203 26333164

16. Siebelink E, Geelen A, de Vries JH. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. Br J Nutr. 2011 Jul;106(2):274–81. doi: 10.1017/S0007114511000067 21338536

17. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009 May 5;150(9):604–12. doi: 10.7326/0003-4819-150-9-200905050-00006 19414839

18. Statistics Netherlands. CBS—Kerncijfers wijken en buurten 2004–2015. https://www.cbs.nl/nl-nl/maatwerk/2011/48/kerncijfers-wijken-en-buurten-2004-2015

19. De Hoogh K, Gulliver J, Van Donkelaar A, Martin RV, Marshall JD, Bechle MJ, et al. Development of West-European PM2. 5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environmental research. 2016 Nov 1;151:1–0. doi: 10.1016/j.envres.2016.07.005 27447442

20. Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al.Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe–the ESCAPE project. Atmos Environ 2013.72:10–23

21. Eeftens M, Beelen R, de Hoogh K, Bellander T, Cesaroni G, Cirach M, et al: Development of Land Use Regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ Sci Technol 2012, 46:11195–205.

22. Anselin L. Local indicators of spatial association. Geogr Anal. 1995 Apr 1;27(2):93–115.

23. Dekker LH, Rijnks RH, Strijker D, Navis GJ. A spatial analysis of dietary patterns in a large representative population in the north of The Netherlands–the Lifelines cohort study. Int J Behav Nutr Phys Act. 2017 Dec;14(1):166. doi: 10.1186/s12966-017-0622-8 29212502

24. Bowe B, Xie Y, Xian H, Lian M, Al-Aly Z. Geographic Variation and US County Characteristics Associated With Rapid Kidney Function Decline. Kidney Int Rep 2017 Jan 1;2(1):5–17. doi: 10.1016/j.ekir.2016.08.016 29142937

25. Occelli F, Deram A, Génin M, Noël C, Cuny D, Glowacki F. Mapping end-stage renal disease (ESRD): spatial variations on small area level in northern France, and association with deprivation. PloS one. 2014 Nov 3;9(11):e110132. doi: 10.1371/journal.pone.0110132 25365039

26. Lin J, Judd S, Le A, Ard J, Newsome BB, Howard G, et al. Associations of dietary fat with albuminuria and kidney dysfunction. The American journal of clinical nutrition. 2010 Aug 11;92(4):897–904. doi: 10.3945/ajcn.2010.29479 20702608

27. Vart P, Gansevoort RT, Joosten MM, Bültmann U, Reijneveld SA. Socioeconomic disparities in chronic kidney disease: a systematic review and meta-analysis. American journal of preventive medicine. 2015 May 1;48(5):580–92. doi: 10.1016/j.amepre.2014.11.004 25891058

28. Zeng X, Liu J, Tao S, Hong HG, Li Y, Fu P. Associations between socioeconomic status and chronic kidney disease: a meta-analysis. J Epidemiol Community Health. 2018 Apr 1;72(4):270–9. doi: 10.1136/jech-2017-209815 29437863

29. Powe N, Crews DC, Gutiérrez OM, Fedewa SA, Luthi JC, Shoham D, et al. Low income, community poverty and risk of end stage renal disease. BMC nephrology. 2014 Dec;15(1):192.

30. Fored CM, Ejerblad E, Fryzek JP, Lambe M, Lindblad P, Nyrén O, et al. Socio‐economic status and chronic renal failure: a population‐based case‐control study in Sweden. Nephrology Dialysis Transplantation. 2003 Jan 1;18(1):82–8.

31. Rucker D, Hemmelgarn BR, Lin M, Manns BJ, Klarenbach SW, Ayyalasomayajula B, et al. Quality of care and mortality are worse in chronic kidney disease patients living in remote areas. Kidney Int. 2011 Jan 2;79(2):210–7. doi: 10.1038/ki.2010.376 20927036

32. Tonelli M, Manns B, Culleton B, Klarenbach S, Hemmelgarn B, Wiebe N, et al. Association between proximity to the attending nephrologist and mortality among patients receiving hemodialysis. CMAJ. 2007 Oct 23;177(9):1039–44. doi: 10.1503/cmaj.070343 17954893

33. Xu X, Nie S, Ding H, Hou FF: Environmental pollution and kidney diseases. Nat Rev Nephrol 2018, 14:313–24. doi: 10.1038/nrneph.2018.11 29479079

34. Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z: Particulate Matter Air Pollution and the Risk of Incident CKD and Progression to ESRD. J Am Soc Nephrol 2018, 29:218–30. doi: 10.1681/ASN.2017030253 28935655

35. Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z: Associations of ambient coarse particulate matter, nitrogen dioxide, and carbon monoxide with the risk of kidney disease: a cohort study. Lancet Planet Health 2017, 1:e267–e76. doi: 10.1016/S2542-5196(17)30117-1 29851625

36. Delanaye P, Cavalier E, Cristol JP, Delanghe JR. Calibration and precision of serum creatinine and plasma cystatin C measurement: impact on the estimation of glomerular filtration rate. J Nephrol. 2014 Oct 1;27(5):467–75.


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#