#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Self-adaptive dual-strategy differential evolution algorithm


Autoři: Meijun Duan aff001;  Hongyu Yang aff001;  Shangping Wang aff003;  Yu Liu aff002
Působiště autorů: National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu, China aff001;  College of Computer Science, Sichuan University, Chengdu, China aff002;  Science and Technology on Electronic Information Control Laboratory, Chengdu, China aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0222706

Souhrn

Exploration and exploitation are contradictory in differential evolution (DE) algorithm. In order to balance the search behavior between exploitation and exploration better, a novel self-adaptive dual-strategy differential evolution algorithm (SaDSDE) is proposed. Firstly, a dual-strategy mutation operator is presented based on the “DE/best/2” mutation operator with better global exploration ability and “DE/rand/2” mutation operator with stronger local exploitation ability. Secondly, the scaling factor self-adaption strategy is proposed in an individual-dependent and fitness-dependent way without extra parameters. Thirdly, the exploration ability control factor is introduced to adjust the global exploration ability dynamically in the evolution process. In order to verify and analyze the performance of SaDSDE, we compare SaDSDE with 7 state-of-art DE variants and 3 non-DE based algorithms by using 30 Benchmark test functions of 30-dimensions and 100-dimensions, respectively. The experiments results demonstrate that SaDSDE could improve global optimization performance remarkably. Moreover, the performance superiority of SaDSDE becomes more significant with the increase of the problems’ dimension.

Klíčová slova:

Algorithms – Optimization – Species diversity – Mutation detection – Evolutionary algorithms – Convergent evolution – Evolutionary immunology – Bacterial evolution


Zdroje

1. Storn R, Price K. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. California: University of California, Berkeley. 1995.

2. Zhai S, Jiang T. A new sense-through-foliage target recognition method based on hybrid differential evolution and self-adaptive particle swarm optimization-based support vector machine. Neuro computing. 2015; 149:573–584.

3. Bui NT, Hasegawa H. Training Artificial Neural Network Using Modification of Differential Evolution Algorithm. International Journal of Machine Learning and Computing. 2015; 5(1):1–6.

4. Arce F, Zamora E, Sossa H, Barrón R. Differential evolution training algorithm for dendrite morphological neural networks. Applied Soft Computing. 2018; 68:303–313.

5. Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst., Man, Cybern. A, Syst., Humans. 2008; 38(1): 218–236.

6. El-Quliti SA, Mohamed AW. A large-scale nonlinear mixed binary goal programming model to assess candidate locations for solar energy stations: an improved real-binary differential evolution algorithm with a case study. J Comput Theor Nanosci. 2016; 13(11):7909–7921.

7. ĈrepinŜek M, Liu SH, Mernik M. Exploration and exploitation in evolutionary algorithms: a survey. ACM Computing Surveys. 2013; 45:1–33.

8. Price K, Storn R, Lampinen J. Differential Evolution: A Practical Approach to Global Optimization. Berlin, Germany: Springer-VerlagR. 2005.

9. Storn R, Price K. Home Page of Differential Evolution. Int. Comput. Sci. Inst., Berkeley, CA, USA. 2010.

10. Tanabe R, Fukunaga A. Success-History Based Parameter Adaptation for Differential Evolution. IEEE Congress on Evolutionary Computation (CEC). 2013; 71–78.

11. Gong WY, Cai ZH, Wang Y. Repairing the crossover rate in adaptive differential evolution. Applied Soft Computing. 2014; 15:149–168.

12. Zhang J, Sanderson AC. JADE: Adaptive differential evolution with optional external archive. IEEE Trans on Evolutionary Computation. 2009; 13(5):945–958.

13. Awad NH, Ali MZ, Suganthan PN, Reynolds RG. An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems. Proceedings of the IEEE Congress on Evolutionary Computation. 2016; 2958–2965.

14. Wu Z, Yang T, Fang JA, Zhang WB. Adaptive population tuning scheme for differential evolution. Information Sciences. 2013; 223:164–191

15. Wang X, Zhao SG. Differential Evolution Algorithm with Self-Adaptive Population Resizing Mechanism. Mathematical Problems in engineering. 2013; Article ID:419372.

16. Chen L, Zhao S, Zhu W, L YY, Z WB. A self-Adaptive differential evolution algorithm for parameters identification of stochastic genetic regulatory networks with random delays. Arabian Journal for Science and Engineering. 2014; 39(2):821–835.

17. Awad NH, Ali MZ, Suganthan PN. Ensemble of parameters in a sinusoidal differential evolution with niching-based population reduction. Swarm and Evolutionary Computation. 2018; 39:141–156.

18. Wang SH, Li YZ, Yang HY. Self-adaptive differential evolution algorithm with improved mutation mode. Applied Intelligence. 2017; 47:644–658.

19. Cai YQ, Sun G, Wang T, Tian H, Chen YH, Wang JH. Neighborhood-adaptive differential evolution for global numerical optimization. Applied Soft Computing. 2017; 59:659–706.

20. Tang RL. Decentralizing and coevolving differential evolution for large-scale global optimization problems. Applied Intelligence. 2017; 47:1208–1223.

21. Mohamed AW, Mohamed AK. Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. International Journal of Machine Learning and Cybernetics. 2017; 1–23.

22. He XY, Zhou YR. Enhancing the performance of differential evolution with covariance matrix self-adaptation. Applied Soft Computing. 2018; 64:227–243.

23. Mohamed AW, Suganthan PN. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft Computing. 2018; 22(10):3215–3235.

24. Cai YQ, Liao JL, Wang T, Chen YH, Tian H. Social learning differential evolution. Information Sciences. 2018; 433–444:464–509.

25. Qin AK, Huang VL, Suganthan PN. Differential evolution algorithm with strategy adaption for global numerical optimization. IEEE Trans on Evolutionary Computation. 2009; 13:398–417.

26. Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans on Evolutionary Computation. 2011; 15(1):55–66.

27. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF. Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing. 2011; 11(2): 1679–1696.

28. Elsayed SM, Sarker RA, Essam DL. A self-adaptive combined strategies algorithm for constrained optimization using differential evolution. Applied Mathematics and Computation. 2014; 241:267–282.

29. Wu GH, Mallipeddi R, Suganthan PN, Wang R, Chen HK. Differential evolution with multi-population based ensemble of mutation strategies. Information Sciences. 2016; 329:329–345.

30. YEH MF, LU HC, CHEN TH, LEU MS. Modified Gaussian barebones differential evolution with hybrid crossover strategy. Proceedings of the 2016 International Conference on Machine Learning and Cybernetics. 2017; 7–12.

31. Cui LZ, Li GH, Zhu ZX, Lin QZ, Wong KC, Chen JY, et al. Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism. Information Sciences. 2018; 422:122–142.

32. Wu GH, Shen X, Li HF, Chen HK, Lin AP, Suganthan PN. Ensemble of differential evolution variants. Information Sciences. 2018; 423:172–186.

33. Lin QZ, Ma YP, Chen JY, Zhu QL, Coello CAC, W KC, et al. An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies. Information Sciences. 2018; 430–431:46–64.

34. Wang Y, Li HX, Huang T, Li L. Differential evolution based on covarianc matrix learning and bimodal distribution parameter setting. Appl. Soft Comput. 2014; 18:232–247.

35. Cai YQ, Wang JH. Differential evolution with hybrid linkage crossover. Inf. Sci 2015; 320:244–287.

36. Guo SM, Yang CC. Enhancing Differential Evolution Utilizing Eigenvector-Based Crossover Operator. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION. 2015; 19(1):31–49.

37. Xu YL, Fang JA, Zhu W, Wang XP, Zhao LD. Differential evolution using a superior-inferior crossover scheme. Comput Optim Appl. 2015; 61:243–274.

38. Zhu QL, Lin QZ, Du ZH, Liang ZP, Wang WJ, Zhu ZX, et al. A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm. Information Sciences. 2016; 345:177–198.

39. Ghosh A, Das S, Mullick SS, Mallipeddi R, Das AK. A switched parameter differential evolution with optional blending crossover for scalable numerical optimization. Applied Soft Computing. 2017; 57:329–352.

40. Qiu X, Tan KC, Xu JX. Multiple Exponential Recombination for Differential Evolution. IEEE TRANSACTIONS ON CYBERNETICS. 2017; 47(4):995–1005. doi: 10.1109/TCYB.2016.2536167 28113880

41. Li X, Yin M. Hybrid differential evolution with artificial bee colony and its application for design of a reconfigurable antenna array with discrete phase shifters. Iet Microwaves Antennas & Propagation. 2012; 6(6):1573–1582.

42. Vaisakh K, Praveena P, Sujatah KN. Differential evolution and bacterial foraging optimization based dynamic economic dispatch with non-smooth fuel cost functions. Swarm, Evolutionary, and Memetic Computing. 2013; 583–594.

43. Ponsich A, Coello CAC. A hybrid differential evolution-Tabu search algorithm for the solution of job-shop scheduling problems. Applied Soft Computing. 2013; 13(1):462–474.

44. Gu XP, Li Y, Jia JH. Feature selection for transient stability assessment based on kernelized fuzzy rough sets and memetic algorithm. Electrical Power and Energy Systems. 2015; 64:664–670.

45. Le LD, Vo D, Nguyen TH, Le AD. A hybrid differential evolution and harmony search for non-convex economic dispatch problems. IEEE Conference on Power Engineering and Optimization. 2013; 238–243.

46. Nenavath H, Jatoth RK. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Applied Soft Computing. 2018; 62:1049–1043.

47. Suganthan PN, Hansen N, Liang J, Deb K. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. 2005.

48. Liang JJ, Qu BY, Suganthan PN, Chen Q. Problem definition and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. 2015.

49. Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. 2016.

50. Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolutionary Computation. 2011; 1:3–18.

51. Cheng R, Jin YC. A social learning particle swarm optimization algorithm for scalable optimization. Information Sciences. 2015; 291: 43–60.

52. Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Advances in Engineering Software. 2014; 69:46–61.

53. Mirjalili S, Lewis A. The Whale Optimization Algorithm. Advances in Engineering Software. 2016; 91:51–67.


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#