Potential causes of early death among admitted newborns in a rural Tanzanian hospital
Autoři:
Robert Moshiro aff001; Jeffrey M. Perlman aff003; Paschal Mdoe aff004; Hussein Kidanto aff005; Jan Terje Kvaløy aff006; Hege L. Ersdal aff001
Působiště autorů:
Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
aff001; Department of Paediatrics and Child Health, Muhimbili National Hospital, Dar es Salaam, Tanzania
aff002; Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
aff003; Department of Obstetrics and Gynecology, Haydom Lutheran Hospital, Manyara, Tanzania
aff004; School of Medicine, Aga Khan University, Dar es Salaam, Tanzania
aff005; Research Department, Stavanger University Hospital, Stavanger, Norway
aff006; Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway
aff007; Department of Anesthesiology and Intensive Care, Stavanger University Hospital, Stavanger, Norway
aff008
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222935
Souhrn
Background
Approximately 40,000 newborns die each year in Tanzania. Regional differences in outcome are common. Reviewing current local data, as well as defining potential causal pathways leading to death are urgently needed, before targeted interventions can be implemented
Objective
To describe the clinical characteristics and potential causal pathways contributing to newborn death and determine the presumed causes of newborn mortality within seven days, in a rural hospital setting.
Methods
Prospective observational study of admitted newborns born October 2014–July 2017. Information about labour/delivery and newborn management/care were recorded on data collection forms. Causes of deaths were predominantly based on clinical diagnosis.
Results
671 were admitted to a neonatal area. Reasons included prematurity n = 213 (32%), respiratory issues n = 209 (31%), meconium stained amniotic fluid with respiratory issues n = 115 (17%) and observation for < 24 hours n = 97 (14%). Death occurred in 124 infants. Presumed causes were birth asphyxia (BA) n = 59 (48%), prematurity n = 19 (15%), presumed sepsis n = 19 (15%), meconium aspiration syndrome (MAS) n = 13 (10%) and congenital abnormalities n = 14 (11%). More newborns who died versus survivors had oxygen saturation <60% on admission (37/113 vs 32/258; p≤0.001) respectively. Moderate hypothermia on admission was common i.e. deaths 35.1 (34.6–36.0) vs survivors 35.5 (35.0–36.0)°C (p≤0.001). Term newborns who died versus survivors were fourfold more likely to have received positive pressure ventilation after birth i.e. 4.57 (1.22–17.03) (p<0.02).
Conclusion
Intrapartum-related complications (BA, MAS), prematurity, and presumed sepsis were the leading causes of death. Intrapartum hypoxia, prematurity and attendant complications and presumed sepsis, are major pathways leading to death. Severe hypoxia and hypothermia upon admission are additional contributing factors. Strategies to identify fetuses at risk during labour e.g. improved fetal heart rate monitoring, coupled with timely interventions, and implementation of WHO interventions for preterm newborns, may reduce mortality in this low resource setting.
Klíčová slova:
Neonates – Labor and delivery – Hypoxia – Heart rate – Sepsis – Neonatal sepsis – Amniotic fluid – Hypothermia
Zdroje
1. Tanzania Demographic Health Survery and Malaria Indicator. 2015.
2. Afnan-Holmes H, Magoma M, John T, Levira F, Msemo G, Armstrong CE, et al. Tanzania’s Countdown to 2015: An analysis of two decades of progress and gaps for reproductive, maternal, newborn, and child health, to inform priorities for post-2015. Lancet Glob Heal. 2015;3: e396–409
3. Lawn JE, Cousens S, Zupan J. 4 Million neonatal deaths: When? Where? Why? Lancet. 2005;365:891–900. doi: 10.1016/S0140-6736(05)71048-5 15752534
4. Lawn JE, Blencowe H, Oza S, You D, Lee ACC, Waiswa P, et al. Every newborn: Progress, priorities, and potential beyond survival. Lancet. 2014;384:189–205. doi: 10.1016/S0140-6736(14)60496-7 24853593
5. World Health Organization. Global Health Observatory (GHO): Data Repository. GHO. 2018. Available from: http://apps.who.int/gho/data/node.home
6. Mmbaga BT, Lie RT, Olomi R, Mahande MJ, Kvåle G, Daltveit AK. Cause-specific neonatal mortality in a neonatal care unit in Northern Tanzania: a registry based cohort study. BMC Pediatr. 2012;12:116. doi: 10.1186/1471-2431-12-116 22871208
7. Tyson JE, Parikh NA, Langer J, Green C, Higgins RD. Intensive care for extreme prematurity-moving beyond gestational age. N Engl J Med. 2008;358:1672–81. doi: 10.1056/NEJMoa073059 18420500
8. Straughn HK, Goldenberg RL, Tolosa JE, Daly S, Codes J De, Festin MR. Birthweight-specific neonatal mortality in developing countries and obstetric practices. Int J Gynaecol Obstet. 2003;80:71–8. doi: 10.1016/s0020-7292(02)00309-0 12527467
9. World Health Organization. WHO Recommendations on Interventions to Improve Preterm Birth Outcomes. 2015. Available from: http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/preterm-birth-guideline/en/%5Cn
10. Mdoe PF, Ersdal HL, Mduma E, Perlman JM, Moshiro R, Wangwe PT, et al. Intermittent fetal heart rate monitoring using a fetoscope or hand held Doppler in a rural Tanzania: a randomized controlled trial. BMC Pregnancy Childbirth. 2018;18:134. doi: 10.1186/s12884-018-1746-9 29728142
11. The American Academy of of Pediatrics. Helping Babies Breathe. 2009. https://www.aap.org/en-us/advocacy-and-policy/aap-health-initiatives/helping-babies-survive/Pages/Helping-Babies-Breathe.aspx
12. Ersdal HL, Eilevstjønn J, Linde JE, Yeconia A, Mduma ER, Kidanto H, et al. Fresh stillborn and severely asphyxiated neonates share a common hypoxic-ischemic pathway. Int J Gynecol Obstet. 2018;141:171–180.
13. World Health Organization. Maternal, Newborn, Child and Adolescent Health. Essential newborn care. World Health Organization. 2010. http://www.who.int/maternal_child_adolescent/documents/newborncare_course/en/
14. Cornblath M, Hawdon JM, Williams AF, Aynsley-Green A, Ward-Platt MP, Schwartz R, et al. Controversies Regarding Definition of Neonatal Hypoglycemia: Suggested Operational Thresholds. Pediatrics. 2000;105:1141–5. doi: 10.1542/peds.105.5.1141 10790476
15. Thompson CM, Puterman AS, Linley LL, Hann M, van der Elst CW, Molteno CD, et al., The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr, 1997. 86(7): p. 757–61. doi: 10.1111/j.1651-2227.1997.tb08581.x 9240886
16. Ohlin A, Björkqvist M, Montgomery SM, Schollin J. Clinical signs and CRP values associated with blood culture results in neonates evaluated for suspected sepsis. Acta Paediatr. 2010;99:1635–40. doi: 10.1111/j.1651-2227.2010.01913.x 20560896
17. Griffin MP, Lake DE, O’Shea TM, Moorman JR. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr Res. 2007;61:222–7. doi: 10.1203/01.pdr.0000252438.65759.af 17237726
18. Perlman JM, Tack ED, Martin T, Shackelford G, Amon E. Acute Systemic Organ Injury in Term Infants After Asphyxia. Am J Dis Child.1989;143:617–20 doi: 10.1001/archpedi.1989.02150170119037 2718998
19. Kiley JP, Eldridge FL, Millhorn DE. The effect of hypothermia on central neural control of respiration. Respir Physiol 1984;58:295–312 doi: 10.1016/0034-5687(84)90006-9 6441983
20. Askin D. Newborn adaptation to extrauterine life. In: Simpson K. R. & Creehan P. A.. AWHONN’s Perinatal Nursing. (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.
21. Vain NE, Szyld EG, Prudent LM, Wiswell TE, Aguilar AM, Vivas NI. Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulders: Multicentre, randomised controlled trial. Lancet. 2004;364:597–602 doi: 10.1016/S0140-6736(04)16852-9 15313360
22. Wiswell TE, Henley MA. Intratracheal suctioning, systemic infection, and the meconium aspiration syndrome. Pediatrics. 1992;89:203 1734384
23. Mdoe PF, Ersdal HL, Mduma E, Moshiro R, Dalen I, et al. Randomized controlled trial of continuous Doppler versus intermittent fetoscope fetal heart rate monitoring in a low-resource setting. Int J Gynaecol Obstet. 2018;143:344–350. doi: 10.1002/ijgo.12648 30120775
24. Kamala BA, Ersdal HL, Dalen I, Abeid MS, Ngarina MM, et al. Implementation of a novel continuous fetal Doppler (Moyo) improves quality of intrapartum fetal heart rate monitoring in a resource-limited tertiary hospital in Tanzania: An observational study. PLoS One. 2018;13:e0205698 doi: 10.1371/journal.pone.0205698 30308040
25. Ersdal HL, Mduma E, Svensen E, Perlman JM. Early initiation of basic resuscitation interventions including face mask ventilation may reduce birth asphyxia related mortality in low-income countries. A prospective descriptive observational study. Resuscitation. 2012;83:869–73. doi: 10.1016/j.resuscitation.2011.12.011 22198423
26. Moshiro R, Ersdal HL, Mdoe P, Kidanto HL, Mbekenga C. Factors affecting effective ventilation during newborn resuscitation: a qualitative study among midwives in rural Tanzania. Glob Health Action. 2018;11:1423862. doi: 10.1080/16549716.2018.1423862 29343190
27. Perlman JM, Risser R. Severe fetal acidemia: Neonatal neurologic features and short-term outcome. Pediatr Neurol.1993;9:277–82 doi: 10.1016/0887-8994(93)90063-i 8216539
28. Patel Ravi M, Sarah Kandefer, Walsh Michele C., Bell Edward F., Carlo Waldemar A., et al. Causes and Timing of Death in Extremely Premature Infants from 2000 through 2011N Engl J Med 2015; 372:331–340
29. Massawe A, Kidanto HL, Moshiro R, Majaliwa E, Chacha F, Shayo A, et al. A care bundle including antenatal corticosteroids reduces preterm infant mortality in Tanzania a low resource country. PLoS One. 2018;13:e0193146 doi: 10.1371/journal.pone.0193146 29513706
30. Laptook AR, Salhab W, Bhaskar B. Admission Temperature of Low Birth Weight Infants: Predictors and Associated Morbidities. Pediatrics. 2007;119:e643–9. doi: 10.1542/peds.2006-0943 17296783
31. de Siqueira Caldas JP, Ferri WAG, Marba STM, Aragon DC, Guinsburg R, et al. Eur J Pediatr (2019). https://doi.org/10.1007/s00431-019-03386-9
32. Mccall EM, Alderdice F, Halliday HL, Vohra S, Johnston L. Interventions to prevent hypothermia at birth in preterm and/or low birth weight infants. Cochrane Database of Systematic Reviews. 2018. Issue 2. Art. No.: CD004210. DOI:
33. Leadford AE, Warren JB, Manasyan A, Chomba E, Salas AA, Schelonka R, et al. Plastic Bags for Prevention of Hypothermia in Preterm and Low Birth Weight Infants. Pediatrics. 2013;132:e128–34 doi: 10.1542/peds.2012-2030 23733796
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs