Overlap between telangiectasia and photoreceptor loss increases with progression of macular telangiectasia type 2
Autoři:
Paul S. Micevych aff001; Hee Eun Lee aff001; Amani A. Fawzi aff001
Působiště autorů:
Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224393
Souhrn
Objectives
To examine the topographical correlation between ellipsoid zone loss and telangiectasia in the deep capillary plexus in patients with macular telangiectasia type 2 (MacTel).
Methods
38 eyes (20 subjects) diagnosed with MacTel were imaged with OCTA between March 2016 and June 2019 in this single center, cross-sectional observational study. The en face OCTA and OCT were evaluated for areas of deep capillary plexus telangiectasia and ellipsoid zone loss, respectively, and their outlines were superimposed to study their overlap (mm2). The primary outcome was percentage of overlap and its relationship to MacTel stage. Secondary outcomes included the relationship between neovascularization and hyperreflective foci as well as correlations between ellipsoid zone loss, deep capillary plexus telangiectasia and visual acuity.
Results
In nonproliferative MacTel stage, ellipsoid zone loss was localized to margins of telangiectatic areas (mean overlap = 15.2%). In proliferative stages, ellipsoid zone loss showed a higher degree of overlap with telangiectatic areas (mean overlap = 62.8%). Overlap increased with advancing MacTel stages, with an overall average of 45.3%. Overlap correlated highly with ellipsoid zone loss (r = 0.831; p<0.0001). Telangiectasia was present in all 38 eyes (range: 0.08mm2–0.99mm2), while ellipsoid zone loss was absent in 6 (range: 0.00–3.32mm2). Visual acuity correlated most strongly with ellipsoid zone loss (r = 0.569; p = 0.0002), followed by overlap (r = 0.544; p = 0.0004), and finally, telangiectasia (r = 0.404; p<0.0118). Presence of hyperreflective foci on OCT correlated with the presence and intraretinal location of neovascularization.
Conclusions
Ellipsoid zone loss occurs at the margins of deep capillary plexus telangiectasia in nonproliferative MacTel, with progressively increasing overlap as MacTel advances, peaking in proliferative disease. Deep capillary plexus telangiectasia and its overlap with ellipsoid zone loss are two promising markers of nonproliferative MacTel, while hyper-reflective foci are markers for proliferative MacTel.
Klíčová slova:
Face – Eye diseases – Eyes – Photoreceptors – Visual acuity – Capillaries – Vasculogenesis – Ellipsoids
Zdroje
1. Powner MB, Gillies MC, Zhu M, Vevis K, Hunyor AP, Fruttiger M. Loss of Muller's cells and photoreceptors in macular telangiectasia type 2. Ophthalmology. 2013;120(11):2344–52. Epub 2013/06/19. doi: 10.1016/j.ophtha.2013.04.013 23769334.
2. Charbel Issa P, Gillies MC, Chew EY, Bird AC, Heeren TF, Peto T, et al. Macular telangiectasia type 2. Progress in retinal and eye research. 2013;34:49–77. Epub 2012/12/12. doi: 10.1016/j.preteyeres.2012.11.002 23219692; PubMed Central PMCID: PMC3638089.
3. Spaide RF, Klancnik JM Jr., Cooney MJ. Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography. JAMA ophthalmology. 2015;133(1):66–73. Epub 2014/10/16. doi: 10.1001/jamaophthalmol.2014.3950 25317692.
4. Gass JD, Oyakawa RT. Idiopathic Juxtafoveolar Retinal Telangiectasis. Archives of Ophthalmology. 1982;100(5):769–80. doi: 10.1001/archopht.1982.01030030773010 7082207
5. Gass JD, Blodi BA. Idiopathic juxtafoveolar retinal telangiectasis. Update of classification and follow-up study. Ophthalmology. 1993;100(10):1536–46. Epub 1993/10/01. 8414413.
6. Helb HM, Charbel Issa P, RL VDV, Berendschot TT, Scholl HP, Holz FG. Abnormal macular pigment distribution in type 2 idiopathic macular telangiectasia. Retina (Philadelphia, Pa). 2008;28(6):808–16. Epub 2008/06/10. doi: 10.1097/IAE.0b013e31816d81aa 18536596.
7. Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA ophthalmology. 2015;133(1):45–50. Epub 2014/10/16. doi: 10.1001/jamaophthalmol.2014.3616 25317632.
8. Dogan B, Erol MK, Akidan M, Suren E, Akar Y. Retinal vascular density evaluated by optical coherence tomography angiography in macular telangiectasia type 2. International ophthalmology. 2019. Epub 2019/01/05. doi: 10.1007/s10792-018-01060-x 30607862.
9. Chidambara L, Gadde SG, Yadav NK, Jayadev C, Bhanushali D, Appaji AM, et al. Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography. The British journal of ophthalmology. 2016;100(11):1482–8. Epub 2016/01/30. doi: 10.1136/bjophthalmol-2015-307941 26823394.
10. Nalci H, Sermet F, Demirel S, Ozmert E. Optic Coherence Angiography Findings in Type-2 Macular Telangiectasia. Turkish journal of ophthalmology. 2017;47(5):279–84. Epub 2017/11/08. doi: 10.4274/tjo.68335 29109897; PubMed Central PMCID: PMC5661178.
11. Yannuzzi LA, Bardal AM, Freund KB, Chen KJ, Eandi CM, Blodi B. Idiopathic macular telangiectasia. Archives of ophthalmology (Chicago, Ill: 1960). 2006;124(4):450–60. Epub 2006/04/12. doi: 10.1001/archopht.124.4.450 16606869.
12. Toto L, Di Antonio L, Mastropasqua R, Mattei PA, Carpineto P, Borrelli E, et al. Multimodal Imaging of Macular Telangiectasia Type 2: Focus on Vascular Changes Using Optical Coherence Tomography Angiography. Investigative ophthalmology & visual science. 2016;57(9):Oct268–76. Epub 2016/07/15. doi: 10.1167/iovs.15-18872 27409482.
13. Gaudric A, Krivosic V, Tadayoni R. OUTER RETINA CAPILLARY INVASION AND ELLIPSOID ZONE LOSS IN MACULAR TELANGIECTASIA TYPE 2 IMAGED BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina (Philadelphia, Pa). 2015;35(11):2300–6. Epub 2015/10/07. doi: 10.1097/iae.0000000000000799 26441270.
14. Tan GS, Kuehlewein L, Sadda SR, Sarraf D, Schwartz SD. SUBRETINAL NEOVASCULARIZATION IN MACULAR TELANGIECTASIA TYPE 2: OPTICAL COHERENCE TOMOGRAPHIC ANGIOGRAPHY AND TREATMENT RESPONSE. Retinal cases & brief reports. 2015;9(4):286–9. Epub 2015/08/20. doi: 10.1097/icb.0000000000000191 26288110.
15. Spaide RF, Klancnik JM Jr., Cooney MJ, Yannuzzi LA, Balaratnasingam C, Dansingani KK, et al. Volume-Rendering Optical Coherence Tomography Angiography of Macular Telangiectasia Type 2. Ophthalmology. 2015;122(11):2261–9. Epub 2015/09/01. doi: 10.1016/j.ophtha.2015.07.025 26315043.
16. Chew EY, Peto T, Clemons TE, Pauleikoff D, Sallo F, Heeren T, et al. Macular Telangiectasia Type 2: A Classification System Using Multi-Modal Imaging. IOVS. 2019;60. ARVO Abstract 1335.
17. Shen W, Fruttiger M, Zhu L, Chung SH, Barnett NL, Kirk JK, et al. Conditional Mullercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2012;32(45):15715–27. Epub 2012/11/09. doi: 10.1523/jneurosci.2841-12.2012 23136411; PubMed Central PMCID: PMC4014009.
18. Sallo FB, Peto T, Egan C, Wolf-Schnurrbusch UE, Clemons TE, Gillies MC, et al. "En face" OCT imaging of the IS/OS junction line in type 2 idiopathic macular telangiectasia. Investigative ophthalmology & visual science. 2012;53(10):6145–52. Epub 2012/08/18. doi: 10.1167/iovs.12-10580 22899757; PubMed Central PMCID: PMC4608676.
19. Sallo FB, Peto T, Egan C, Wolf-Schnurrbusch UE, Clemons TE, Gillies MC, et al. The IS/OS junction layer in the natural history of type 2 idiopathic macular telangiectasia. Investigative ophthalmology & visual science. 2012;53(12):7889–95. Epub 2012/10/25. doi: 10.1167/iovs.12-10765 23092925; PubMed Central PMCID: PMC4606792.
20. Pauleikhoff D, Gunnemann F, Book M, Rothaus K. Progression of vascular changes in macular telangiectasia type 2: comparison between SD-OCT and OCT angiography. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2019. Epub 2019/05/17. doi: 10.1007/s00417-019-04323-0 31093765.
21. Runkle AP, Kaiser PK, Srivastava SK, Schachat AP, Reese JL, Ehlers JP. OCT Angiography and Ellipsoid Zone Mapping of Macular Telangiectasia Type 2 From the AVATAR Study. Investigative ophthalmology & visual science. 2017;58(9):3683–9. Epub 2017/07/21. doi: 10.1167/iovs.16-20976 28727884; PubMed Central PMCID: PMC5518977.
22. Peto T, Heeren TFC, Clemons TE, Sallo FB, Leung I, Chew EY, et al. CORRELATION OF CLINICAL AND STRUCTURAL PROGRESSION WITH VISUAL ACUITY LOSS IN MACULAR TELANGIECTASIA TYPE 2: MacTel Project Report No. 6-The MacTel Research Group. Retina (Philadelphia, Pa). 2018;38 Suppl 1:S8–s13. Epub 2017/05/16. doi: 10.1097/iae.0000000000001697 28505012.
23. Rhee KD, Nusinowitz S, Chao K, Yu F, Bok D, Yang X-J. CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Müller glial cells. Proceedings of the National Academy of Sciences. 2013;110(47):E4520–E9. doi: 10.1073/pnas.1303604110 24191003
24. Chew EY, Clemons TE, Jaffe GJ, Johnson CA, Farsiu S, Lad EM, et al. Effect of Ciliary Neurotrophic Factor on Retinal Neurodegeneration in Patients with Macular Telangiectasia Type 2: A Randomized Clinical Trial. Ophthalmology. 2019;126(4):540–9. Epub 2018/10/08. doi: 10.1016/j.ophtha.2018.09.041 30292541.
25. Hu W, Jiang A, Liang J, Meng H, Chang B, Gao H, et al. Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model's retinal angiomatous proliferation. Investigative ophthalmology & visual science. 2008;49(1):407–15. Epub 2008/01/04. doi: 10.1167/iovs.07-0870 18172119.
26. Hasegawa E, Sweigard H, Husain D, Olivares AM, Chang B, Smith KE, et al. Characterization of a spontaneous retinal neovascular mouse model. PLoS One. 2014;9(9):e106507. Epub 2014/09/05. doi: 10.1371/journal.pone.0106507 25188381; PubMed Central PMCID: PMC4154693.
27. Zhao M, Andrieu-Soler C, Kowalczuk L, Paz Cortes M, Berdugo M, Dernigoghossian M, et al. A new CRB1 rat mutation links Muller glial cells to retinal telangiectasia. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2015;35(15):6093–106. Epub 2015/04/17. doi: 10.1523/jneurosci.3412-14.2015 25878282; PubMed Central PMCID: PMC4397606.
28. Luo L, Uehara H, Zhang X, Das SK, Olsen T, Holt D, et al. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. eLife. 2013;2:e00324. Epub 2013/06/26. doi: 10.7554/eLife.00324 23795287; PubMed Central PMCID: PMC3687373.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Je Fuchsova endotelová dystrofie rohovky neurodegenerativní onemocnění?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis