Using long-term datasets to assess the impacts of dietary exposure to neonicotinoids on farmland bird populations in England
Autoři:
Rosie J. Lennon aff001; Nick J. B. Isaac aff002; Richard F. Shore aff003; Will J. Peach aff004; Jenny C. Dunn aff005; M. Glória Pereira aff003; Kathryn E. Arnold aff001; David Garthwaite aff006; Colin D. Brown aff001
Působiště autorů:
Department of Environment and Geography, University of York, York, England, United Kingdom
aff001; Centre for Ecology & Hydrology, Wallingford, Oxfordshire, England, United Kingdom
aff002; Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, England, United Kingdom
aff003; RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Sandy, Bedfordshire, England, United Kingdom
aff004; School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, England, United Kingdom
aff005; Fera Science Ltd., National Agri-food Innovation Campus, Sand Hutton, York, England, United Kingdom
aff006
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223093
Souhrn
Over the last 20 years, a new group of systemic insecticides–the neonicotinoids—has gained prominence in arable systems, and their application globally has risen year on year. Previous modelling studies using long-term data have suggested that neonicotinoid application has had a detrimental impact on bird populations, but these studies were either limited to a single species or neglected to analyse specific exposure pathways in conjunction with observed population trends. Using bird abundance data, neonicotinoid usage records and cropping data for England at a 5x5 km resolution, generalised linear mixed models were used to test for spatio-temporal associations between neonicotinoid use and changes in the populations of 22 farmland bird species between 1994 and 2014, and to determine whether any associations were explained by dietary preferences. We assigned farmland bird species to three categories of dietary exposure to neonicotinoids based on literature data for species diets and neonicotinoid residues present in dietary items. Significant estimates of neonicotinoid-related population change were obtained for 13 of the 22 species (9 positive effects, 4 negative effects). Model estimates for individual species were not collectively explained by dietary risk categories, so dietary exposure to neonicotinoids via ingestion of treated seeds and seedlings could not be confirmed as a causal factor in farmland bird declines. Although it is not possible to infer any generic effect of dietary exposure to neonicotinoids on farmland bird populations, our analysis identifies three species with significant negative estimates that may warrant further research (house sparrow Passer domesticus, skylark Alauda arvensis and red-legged partridge Alectoris rufa). We conclude that there was either no consistent effect of dietary exposure to neonicotinoids on farmland bird populations in England, or that any over-arching effect was not detectable using our study design. The potential for indirect effects of insecticide use on bird populations via reduced food availability was not considered here and should be a focus for future research.
Klíčová slova:
Diet – Birds – Crops – Toxicity – England – Pesticides – Partridges – Poaceae
Zdroje
1. Green RE, Cornell SJ, Scharlemann JPW, Balmford A. Farming and the fate of wild nature. Science. 2005;307(5709):550–5. doi: 10.1126/science.1106049 15618485
2. Stanton RL, Morrissey CA, Clark RG. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric Ecosyst Environ. 2018;254:244–54.
3. Chamberlain DE, Fuller RJ, Bunce RGH, Duckworth JC, Shrubb M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol. 2000;37(5):771–88.
4. Newton I. The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis. 2004;146:579–600.
5. Fuller R, Gregory R, Gibbons D, Marchant J, Wilson J, Baillie S, et al. Population declines and range contractions among lowland farmland birds in Britain. Conserv Biol. 1995;9(6):1425–41.
6. Burns F, Eaton MA, Barlow KE, Beckmann BC, Brereton T, Brooks DR, et al. Agricultural management and climatic change are the major drivers of biodiversity change in the UK. PLoS One. 2016;11(3):e0151595. doi: 10.1371/journal.pone.0151595 27007973
7. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin J-M, Chagnon M, Downs C, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res Int. 2015;22(1):5–34. doi: 10.1007/s11356-014-3470-y 25233913
8. Agriculture and Horticulture Development Board. The neonicotinoid insecticide debate [Internet]. 2013. Available from: https://horticulture.ahdb.org.uk/news-item/neonicotinoid-insecticide-debate-0.
9. Garthwaite D, Hudson S, Barker I, Parrish GP, Smith L, Pietravalle S. Pesticide Usage Survey Report 255 –Grassland & Fodder Crops in Great Britain 2013. Food & Environment Research Agency (Fera Science Ltd.), UK, 2013.
10. Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol. 2005;45:247–68. doi: 10.1146/annurev.pharmtox.45.120403.095930 15822177.
11. Mineau P, Palmer C. The Impact of the Nation’s Most Widely Used Insecticides on Birds. American Bird Conservancy, USA, 2013.
12. Department of Environment Food and Rural Affairs. Wild bird populations in the UK, 1970 to 2014: Annual statistical release. Defra National Statistics, UK, 2015.
13. Hayhow D, Bond A, Douse A, Eaton M, Frost T, Grice P, et al. The Status of UK Birds 2015. Royal Society for the Protection of Birds, UK, 2016.
14. Robinson RA, Sutherland WJ. Post war changes in arable farming and biodiversity in Great Britain. J Appl Ecol. 2002;39(1):157–76.
15. Garthwaite D, Thomas MR, Hart M. Pesticide Usage Survey Report 127: Arable Farm Crops in Great Britain. Central Sciences Laboratory, UK, 1994.
16. Lopez-Antia A, Feliu J, Camarero PR, Ortiz Santaliestra ME, Mateo R. Risk assessment of pesticide seed treatment for farmland birds using refined field data. J Appl Ecol. 2016;53(5):1373–81. doi: 10.1111/1365-2664.12668
17. McGee S, Whitfield-Aslund M, Duca D, Kopysh N, Dan T, Knopper L, et al. Field evaluation of the potential for avian exposure to clothianidin following the planting of clothianidin-treated corn seed. PeerJ. 2018;7(6):e5880.
18. Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Mateo R. Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity. Environ Res. 2015;136:97–107. doi: 10.1016/j.envres.2014.10.023 25460626
19. Addy-Orduna LM, Brodeur JC, Mateo R. Oral acute toxicity of imidacloprid, thiamethoxam and clothianidin in eared doves: a contribution for the risk assessment of neonicotinoids in birds. Sci Total Environ. 2018;10(650):1216–23.
20. Hao C, Eng ML, Sun F, Morrissey CA. Part-per-trillion LC-MS/MS determination of neonicotinoids in small volumes of songbird plasma. Sci Total Environ. 2018;644:1080–7. doi: 10.1016/j.scitotenv.2018.06.317 30743821
21. Eng ML, Stutchbury BJ, Morrissey CA. Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci Rep. 2017;7(1):15176. doi: 10.1038/s41598-017-15446-x 29123163
22. Bayer Crop Science UK. Redgio Deter label [Internet]. 2019. Available from: https://cropscience.bayer.co.uk/our-products/seed-treatments/redigo-deter/.
23. Prosser P, Hart ADM. Assessing potential exposure of birds to pesticide-treated seeds. Ecotoxicology. 2005;14:679–91. doi: 10.1007/s10646-005-0018-4 16151611
24. Alford A, Krupke CH. Translocation of the neonicotinoid seed treatment clothianidin in maize. PloS One. 2017;12(3):e0173836. doi: 10.1371/journal.pone.0173836 28282441
25. Botias C, David A, Hill EM, Goulson D. Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci Total Environ. 2016;566–567:269–78. doi: 10.1016/j.scitotenv.2016.05.065 27220104.
26. Prosser P. Project PN0907: Potential Exposure of Birds to Treated Seed. Central Science Laboratory, UK, 2001.
27. Humann-Guilleminot S, Clément S, Desprat J, Binkowski Ł, Glauser G, Helfenstein F. A large-scale survey of house sparrows feathers reveals ubiquitous presence of neonicotinoids in farmlands. Sci Total Environ. 2019;660:1091–7. doi: 10.1016/j.scitotenv.2019.01.068 30743906
28. Bro E, Devillers J, Millot F, Decors A. Residues of plant protection products in grey partridge eggs in French cereal ecosystems. Environ Sci Pollut Res Int. 2016;23(10):9559–73. doi: 10.1007/s11356-016-6093-7 26841780; PubMed Central PMCID: PMCPMC4871908.
29. Millot F, Decors A, Mastain O, Quintaine T, Berny P, Vey D, et al. Field evidence of bird poisonings by imidacloprid-treated seeds: a review of incidents reported by the French SAGIR network from 1995 to 2014. Environ Sci Pollut Res Int. 2017;24(6):5469–85. doi: 10.1007/s11356-016-8272-y 28028702
30. Chauzat MP, Martel AC, Cougoule N, Porta P, Lachaize J, Zeggane S, et al. An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presence in continental France. Environ Toxicol Chem. 2011;30(1):103–11. doi: 10.1002/etc.361 20853451
31. Pandey SP, Mohanty B. The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary-thyroid axis of a wildlife bird. Chemosphere. 2015;122:227–34. doi: 10.1016/j.chemosphere.2014.11.061 25496744.
32. Hallmann CA, Foppen RP, van Turnhout CA, de Kroon H, Jongejans E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature. 2014;511(7509):341–3. doi: 10.1038/nature13531 25030173.
33. British Trust for Ornithology. BBS Reports [Internet]. 2018. Available from: https://www.bto.org/volunteer-surveys/bbs/bbs-publications/bbs-reports.
34. EDiNA. Agricultural census data [cited 2017 Mar]. Database: agcensus [Internet]. Available from: http://agcensus.edina.ac.uk/.
35. Woodcock BA, Isaac NJB, Bullock JM, Roy DB, Garthwaite DG, Crowe A, et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat Commun. 2016;7:12459. doi: 10.1038/ncomms12459 27529661
36. The Royal Society for the Protection of Birds. The Farmland Bird Indicator [Internet]. 2018. Available from: https://www.rspb.org.uk/our-work/conservation/conservation-and-sustainability/farming/near-you/farmland-bird-indicator.
37. British Trust for Ornithology. Breeding Bird Survey [cited 2018 Nov]. Database: BTO/JNCC/RSPB Breeding Bird Survey Trends 2017—England [Internet]. 2017. Available from: https://www.bto.org/volunteer-surveys/bbs/latest-results/population-trends.
38. Holland JM, Hutchison MAS, Smith B, Aebischer NJ. A review of invertebrates and seed-bearing plants as food for farmland birds in Europe. Ann Appl Biol. 2006;148(1):49–71. doi: 10.1111/j.1744-7348.2006.00039.x
39. Cramp S. Handbook of the Birds of Europe the Middle East and North Africa. The Birds of the Western Palearctic (Vol. I-IX). Oxford University Press, UK; 1985.
40. Tait MJ. Winter Food and Feeding requirements of the Starling. Bird Study. 1973;20(3):226–36.
41. Donald P, Buckingham D, Moorcroft D, Muirhead L, Evans A, Kirby W. Habitat use and diet of skylarks Alauda arvensis wintering on lowland farmland in southern Britain. J Appl Ecol. 2001;38(3):536–47.
42. Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9(2):378–400.
43. Freeman SN, Newson SE. On a log-linear approach to detecting ecological interactions in monitored populations. Ibis. 2008;150:250–8.
44. Baker DJ, Freeman SN, Grice PV, Siriwardena GM. Landscape scale responses of birds to agri‐environment management: a test of the English Environmental Stewardship scheme. J Appl Ecol. 2012;49(4):871–82.
45. Bolker B. GLMM FAQ [Internet]. 2018. Available from: https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html.
46. Hartig F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models [Internet]. 2016. Available from: https://CRAN.R-project.org/package=DHARMa.
47. R Core Team. R: A language and environment for statistical computing. 2013.
48. Hume R. RSPB Birds of Britain and Europe: Dorling Kindersley, UK; 2014.
49. Browne SJ, Aebischer NJ. Temporal changes in the breeding ecology of European Turtle Doves Streptopelia turtur in Britain, and implications for conservation. Ibis. 2004;146(1):125–37.
50. Dunn J, Stockdale J, Moorhouse-Gann R, McCubbin A, Hipperson H, Morris A, et al. The decline of the Turtle Dove: dietary associations with body condition and competition with other columbids analysed using high throughput sequencing. Mol Ecol: mec14766 [e-print]. 2018. doi: 10.1111/mec.14766 29927007
51. MacDonald AM, Jardine CM, Thomas PJ, Nemeth NM. Neonicotinoid detection in wild turkeys (Meleagris gallopavo silvestris) in Ontario, Canada. Environ Sci Pollut Res Int. 2018;25(16):16254–60. doi: 10.1007/s11356-018-2093-0 29704179
52. Bro E, Millot F, Decors A, Devillers J. Quantification of potential exposure of gray partridge (Perdix perdix) to pesticide active substances in farmlands. Sci Total Environ. 2015;521–522:315–25. doi: 10.1016/j.scitotenv.2015.03.073 25847175.
53. Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Mateo R. Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole. Ecotoxicology. 2013;22(1):125–38. doi: 10.1007/s10646-012-1009-x 23111803.
54. Ertl HM, Mora MA, Brightsmith DJ, Navarro-Alberto JA. Potential impact of neonicotinoid use on Northern bobwhite (Colinus virginianus) in Texas: A historical analysis. PloS One. 2018;13(1):e0191100. doi: 10.1371/journal.pone.0191100 29324902
55. Gibbons D, Morrissey C, Mineau P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res Int. 2015;22(1):103–18. doi: 10.1007/s11356-014-3180-5 24938819; PubMed Central PMCID: PMCPMC4284370.
56. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009;24(3):127–35. doi: 10.1016/j.tree.2008.10.008 19185386
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis