The effect of yoga practice on glycemic control and other health parameters in the prediabetic state: A systematic review and meta-analysis
Autoři:
Ramya Ramamoorthi aff001; Daniel Gahreman aff001; Timothy Skinner aff002; Simon Moss aff001
Působiště autorů:
College of Health and Human Sciences, Charles Darwin University, Darwin, Northern Territory, Australia
aff001; Københavns Universitet, Institut for Psykologi, Center for Sundhed og Samfund, Københavns Universitet, København K, Denmark
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0221067
Souhrn
A systematic review and meta-analysis was conducted to investigate the effects of yoga on glycemic control, lipid profiles, body composition and blood pressure in people in the pre-diabetic state. Studies on the effectiveness of yoga on population groups under high risk for diabetes, called prediabetic or suffering from metabolic syndromes were extracted from a thorough search of PubMed, Scopus, Cochrane Library, EBSCO and IndMED databases. Both Randomised Controlled Trial (RCT) and non-RCT studies were included in the systematic review and meta-analysis. Studies published between Jan 2002 and Dec 2018 were included. Studies were considered for evaluation if they investigated a yoga intervention to prevent T2DM, against a control group, while also reporting glycemic control and other health parameters of T2DM management. Summary effect sizes and 95% confidence intervals (CI) were calculated using the Comprehensive Meta-Analysis software in addition to publication bias. Of the 46,500 identified studies, 14 studies with 834 participants of whom were 50% women, were found to be eligible for inclusion in our systematic review. Our quantitative synthesis included 12 randomized control trials and 2 non-randomized control trials, with the follow-up period ranging from 4 to 52 weeks. Compared to controls, yoga intervention improved fasting blood glucose (FBG) [Standard Mean Difference (SMD -0.064 mg/dL (95% CI -0.201 to 0.074)]; low density lipoprotein (LDL) [SMD-0.090 mg/dL (95% CI -0.270 to 0.090)]; triglycerides [SMD -0.148 mg/dL (95% CI -0.285 to -0.012)]; total cholesterol [SMD -0.058 mg/dL (95% CI -0.220 to 0.104)] and systolic blood pressure [SMD -0.058 mm Hg (95% CI -0.168 to 0.053)]. This meta-analysis uncovered clinically improved effects of yoga intervention on glycemic control, lipid profiles and other parameters of T2DM management in prediabetic population. These results suggest that yoga intervention may be considered as a comprehensive and alternative approach to preventing T2DM. Further adequately powered, well designed RCTs are needed to support our findings and investigate the long-term effects of yoga in T2DM patients.
Klíčová slova:
Cholesterol – Systematic reviews – Blood pressure – Publication ethics – Blood sugar – Lipid profiles
Zdroje
1. care ADAJD. Diagnosis and classification of diabetes mellitus. 2014;37(Supplement 1):S81–S90.
2. Organization WH. Global report on diabetes: World Health Organization; 2016.
3. Organization WH. Diabetes 2018 [cited 2019 19/01/2019]. https://www.who.int/news-room/fact-sheets/detail/diabetes.
4. Violi F, Targher G, Vestri A, Carnevale R, Averna M, Farcomeni A, et al. Effect of aspirin on renal disease progression in patients with type 2 diabetes: A multicenter, double-blind, placebo-controlled, randomized trial. The renaL disEase progression by aspirin in diabetic pAtients (LEDA) trial. Rationale and study design. 2017;189:120–7.
5. Black PH JB, behavior, immunity. The inflammatory response is an integral part of the stress response: Implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X. 2003;17(5):350–64.
6. Heraclides A, Chandola T, Witte DR, Brunner EJ JDc. Psychosocial stress at work doubles the risk of type 2 diabetes in middle-aged women: evidence from the Whitehall II study. 2009.
7. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali VJA. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? 2000;148(2):209–14.
8. Delamater AM, Jacobson AM, Anderson B, Cox D, Fisher L, Lustman P, et al. Psychosocial therapies in diabetes: report of the Psychosocial Therapies Working Group. 2001;24(7):1286–92.
9. Faulenbach M, Uthoff H, Schwegler K, Spinas G, Schmid C, Wiesli P JDM. Effect of psychological stress on glucose control in patients with type 2 diabetes. 2012;29(1):128–31.
10. Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Meigs JB, et al. Population-based incidence rates and risk factors for type 2 diabetes in white individuals: the Bruneck study. 2004;53(7):1782–9.
11. Cui J, Yan JH, Yan LM, Pan L, Le JJ, Guo YZ JJodi. Effects of yoga in adults with type 2 diabetes mellitus: A meta-analysis. 2017;8(2):201–9.
12. Falci L, Shi Z, Greenlee H JPcd. Peer Reviewed: Multiple Chronic Conditions and Use of Complementary and Alternative Medicine Among US Adults: Results From the 2012 National Health Interview Survey. 2016;13.
13. Medagama AB, Bandara R JNj. The use of complementary and alternative medicines (CAMs) in the treatment of diabetes mellitus: is continued use safe and effective? 2014;13(1):102.
14. Mooventhan A, Nivethitha L JJob, therapies m. Evidence based effects of yoga practice on various health related problems of elderly people: A review. 2017;21(4):1028–32.
15. Singh K JIJoADS. Effect of yoga on dental care: Pranayama techniques or rhythmic breathing exercises on the oral hygiene and gingival bleeding. 2017;3(3):91–5.
16. Chandler K. The emerging field of yoga therapy. 2001.
17. Liu X-C, Pan L, Hu Q, Dong W-P, Yan J-H, Dong L JJotd. Effects of yoga training in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. 2014;6(6):795.
18. Raub JA JTJoA, Medicine C. Psychophysiologic effects of Hatha Yoga on musculoskeletal and cardiopulmonary function: a literature review. 2002;8(6):797–812.
19. Damodaran A, Malathi A, Patil N, Shah N, Marathe S JTJotAoPoI. Therapeutic potential of yoga practices in modifying cardiovascular risk profile in middle aged men and women. 2002;50(5):633–40.
20. Garfinkel M, Schumacher HR Jr JRDCoNA. Yoga. 2000;26(1):125–32.
21. Pandya DP, Vyas VH, Vyas SH JCt. Mind-body therapy in the management and prevention of coronary disease. 1999;25(5):283–93.
22. Sahay B, Sahay RK JJotIMA. Lifestyle modification in management of diabetes mellitus. 2002;100(3):178–80.
23. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. 2016;39(11):2065–79.
24. Katula JA, Kirk JK, Pedley CF, Savoca MR, Effoe VS, Bell RA, et al. The Lifestyle Intervention for the Treatment of Diabetes study (LIFT Diabetes): design and baseline characteristics for a randomized translational trial to improve control of cardiovascular disease risk factors. 2017;53:89–99.
25. Sanders AB. Effectiveness of a low dose behavior change intervention on physical activity maintenance following an exercise trial in pre-type II diabetics: Colorado State University. Libraries; 2017.
26. Schellenberg ES, Dryden DM, Vandermeer B, Ha C, Korownyk CJ Aoim. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. 2013;159(8):543–51.
27. Hardie EA, Critchley CR, Moore SM JAP. Prediabetes Subtypes: Patterns of risk, vulnerabilities, and intervention needs. 2015;50(6):455–63.
28. O’Dea A, Tierney M, McGuire BE, Newell J, Glynn LG, Gibson I, et al. Can the onset of type 2 diabetes be delayed by a group-based lifestyle intervention in women with prediabetes following gestational diabetes mellitus (GDM)? Findings from a randomized control mixed methods trial. 2015;2015.
29. Gordon L, Morrison EY, McGrowder DA, Young R, Garwood D, Zamora E, et al. Changes in clinical and metabolic parameters after exercise therapy in patients with type 2 diabetes. 2008;4(4):427–37.
30. Gordon LA, Morrison EY, McGrowder DA, Young R, Fraser YTP, Zamora EM, et al. Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes. 2008;8(1):21.
31. Jyotsna V, Dhawan A, Sreenivas V, Deepak K, Singla R JIjoe, metabolism. Completion report: Effect of Comprehensive Yogic Breathing program on type 2 diabetes: A randomized control trial. 2014;18(4):582.
32. Kyizom T, Singh S, Singh K, Tandon O, Kumar R JIJoMR. Effect of pranayama & yoga-asana on cognitive brain functions in type 2 diabetes-P3 event related evoked potential (ERP). 2010;131(5).
33. Popli U, Subbe CP, Sunil K JAtih, medicine. The Role of Yoga as a Lifestyle Modification in Treatment of Diabetes Mellitus: Results of a Pilot Study. 2014;20(6):24–6.
34. Shantakumari N, Sequeira S JIhj. Effects of a yoga intervention on lipid profiles of diabetes patients with dyslipidemia. 2013;65(2):127–31.
35. Singh S, Kyizom T, Singh K, Tandon O, Madhu S JIJoCB. Influence of pranayamas and yoga-asanas on serum insulin, blood glucose and lipid profile in type 2 diabetes. 2008;23(4):365–8.
36. Skoro-Kondza L, Tai SS, Gadelrab R, Drincevic D, Greenhalgh T JBhsr. Community based yoga classes for type 2 diabetes: an exploratory randomised controlled trial. 2009;9(1):33.
37. Alexander GK, Taylor AG, Innes KE, Kulbok P, Selfe TK JF, health c. Contextualizing the effects of yoga therapy on diabetes management: a review of the social determinants of physical activity. 2008;31(3):228.
38. Aljasir B, Bryson M, Al-shehri B JE-BC, Medicine A. Yoga practice for the management of type II diabetes mellitus in adults: a systematic review. 2010;7(4):399–408.
39. Kumar S, Adhikari P, Jeganathan P JIJoAM, Yoga, 5. Biopsychosocial effects of Yoga in patients with diabetes: A focused review. 2011;11.
40. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. 2009;6(7):e1000100.
41. Raveendran AV, Deshpandae A, Joshi SR JE, Metabolism. Therapeutic Role of Yoga in Type 2 Diabetes. 2018;33(3):307–17.
42. Innes KE, Selfe TK JJodr. Yoga for adults with type 2 diabetes: a systematic review of controlled trials. 2016;2016.
43. Kumar V, Jagannathan A, Philip M, Thulasi A, Angadi P, Raghuram N JCTiM. Role of yoga for patients with type II diabetes mellitus: a systematic review and meta-analysis. 2016;25:104–12.
44. Thind H, Lantini R, Balletto BL, Donahue ML, Salmoirago-Blotcher E, Bock BC, et al. The effects of yoga among adults with type 2 diabetes: A systematic review and meta-analysis. 2017;105:116–26.
45. Björntorp P, Holm G, Rosmond R JDm. Hypothalamic arousal, insulin resistance and type 2 diabetes mellitus. 1999;16(5):373–83.
46. Ljung T, Holm G, Friberg P, Andersson B, Bengtsson BÅ, Svensson J, et al. The activity of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system in relation to waist/hip circumference ratio in men. 2000;8(7):487–95.
47. Tsigos C, Young RJ, White A JTJoCE, Metabolism. Diabetic neuropathy is associated with increased activity of the hypothalamic-pituitary-adrenal axis. 1993;76(3):554–8.
48. Waryasz GR, McDermott AY JJotAaoNP. Exercise prescription and the patient with type 2 diabetes: a clinical approach to optimizing patient outcomes. 2010;22(4):217–27.
49. Hegde SV, Adhikari P, Shetty S, Manjrekar P, D'Souza V JCtim. Effect of community-based yoga intervention on oxidative stress and glycemic parameters in prediabetes: a randomized controlled trial. 2013;21(6):571–6.
50. Vaishali K, Kumar KV, Adhikari P, UnniKrishnan B JP, Geriatrics OTi. Effects of yoga-based program on glycosylated hemoglobin level serum lipid profile in community dwelling elderly subjects with chronic type 2 diabetes mellitus–a randomized controlled trial. 2012;30(1):22–30.
51. Moher D, Liberati A, Tetzlaff J, Altman DG JAoim. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. 2009;151(4):264–9.
52. Ramamoorthi R, Gahreman D, Moss S, Skinner T JM. The effectiveness of yoga to prevent diabetes mellitus type 2: A protocol for systematic review and meta-analysis. 2019;98(3):e14019.
53. Clark HD, Wells GA, Huët C, McAlister FA, Salmi LR, Fergusson D, et al. Assessing the quality of randomized trials: reliability of the Jadad scale. 1999;20(5):448–52.
54. Hardy RJ, Thompson SG JSim. Detecting and describing heterogeneity in meta-analysis. 1998;17(8):841–56.
55. Orwin RG JJoes. A fail-safe N for effect size in meta-analysis. 1983;8(2):157–9.
56. Rothstein HR JJoEC. Publication bias as a threat to the validity of meta-analytic results. 2008;4(1):61–81.
57. Begg CB, Mazumdar MJB. Operating characteristics of a rank correlation test for publication bias. 1994:1088–101.
58. Duval S, Tweedie RJ JotASA. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. 2000;95(449):89–98.
59. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315(7109):629–34. doi: 10.1136/bmj.315.7109.629 9310563
60. Rosenthal R. The file drawer problem and tolerance for null results. Psychological bulletin. 1979;86(3):638.
61. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994:1088–101. 7786990
62. Duval S, Tweedie R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63. 10877304
63. Eun CS, Dol KS. Effects of yogic exercise on glycemic control and lipid profiles in Type 2 diabetes: A meta-analysis of randomized controlled trials. 2017.
64. Innes KE, Vincent HK JE-BC, Medicine A. The influence of yoga-based programs on risk profiles in adults with type 2 diabetes mellitus: a systematic review. 2007;4(4):469–86.
65. Jayawardena R, Ranasinghe P, Chathuranga T, Atapattu PM, Misra AJD, Research MSC, et al. The benefits of yoga practice compared to physical exercise in the management of type 2 diabetes mellitus: a systematic review and meta-analysis. 2018.
66. Keerthi GS, Pal P, Pal GK, Sahoo JP, Sridhar MG, Balachander J JJoc, et al. Effect of 12 Weeks of Yoga Therapy on Quality of Life and Indian Diabetes Risk Score in Normotensive Indian Young Adult Prediabetics and Diabetics: Randomized Control Trial. 2017;11(9):CC10.
67. Netam R, Yadav RK, Khadgawat R, Sarvottam K, Yadav R JTIjomr. Interleukin-6, vitamin D & diabetes risk-factors modified by a short-term yoga-based lifestyle intervention in overweight/obese individuals. 2015;141(6):775.
68. Tyagi A, Cohen M, Reece J, Telles S JBc, medicine a. An explorative study of metabolic responses to mental stress and yoga practices in yoga practitioners, non-yoga practitioners and individuals with metabolic syndrome. 2014;14(1):445.
69. McDermott KA, Rao MR, Nagarathna R, Murphy EJ, Burke A, Nagendra RH, et al. A yoga intervention for type 2 diabetes risk reduction: a pilot randomized controlled trial. 2014;14(1):212.
70. Yadav R, Yadav RK, Khadgawat R, Pandey RM JTbm. Comparative efficacy of a 12 week yoga-based lifestyle intervention and dietary intervention on adipokines, inflammation, and oxidative stress in adults with metabolic syndrome: a randomized controlled trial. 2018.
71. Sohl SJ, Wallston KA, Watkins K, Birdee GS JE-BC, Medicine A. Yoga for risk reduction of metabolic syndrome: Patient-reported outcomes from a randomized controlled pilot study. 2016;2016.
72. Kanaya AM, Araneta MRG, Pawlowsky SB, Barrett-Connor E, Grady D, Vittinghoff E, et al. Restorative yoga and metabolic risk factors: the Practicing Restorative Yoga vs. Stretching for the Metabolic Syndrome (PRYSMS) randomized trial. 2014;28(3):406–12.
73. Supriya R, Yu AP, Lee PH, Lai CW, Cheng KK, Yau SY, et al. Yoga training modulates adipokines in adults with high-normal blood pressure and metabolic syndrome. 2018;28(3):1130–8.
74. Cramer H, Lauche R, Langhorst J, Dobos G JCct. Are Indian yoga trials more likely to be positive than those from other countries? A systematic review of randomized controlled trials. 2015;41:269–72.
75. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? 1996;17(1):1–12.
76. Saffari M, Ghanizadeh G, Koenig HG JPcd. Health education via mobile text messaging for glycemic control in adults with type 2 diabetes: a systematic review and meta-analysis. 2014;8(4):275–85.
77. Collaboration C. Cochrane handbook for systematic reviews of interventions: Cochrane Collaboration; 2008.
78. Higgins JP, Thompson SG, Deeks JJ, Altman DG JBBMJ. Measuring inconsistency in meta-analyses. 2003;327(7414):557.
79. Schulz KF, Altman DG, Moher D JAoim. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. 2010;152(11):726–32.
80. Des Jarlais DC, Lyles C, Crepaz N, health TGJAjop. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. 2004;94(3):361–6.
81. Corey SM, Epel E, Schembri M, Pawlowsky SB, Cole RJ, Araneta MRG, et al. Effect of restorative yoga vs. stretching on diurnal cortisol dynamics and psychosocial outcomes in individuals with the metabolic syndrome: the PRYSMS randomized controlled trial. 2014;49:260–71.
82. Ornish D, Brown SE, Billings J, Scherwitz L, Armstrong WT, Ports TA, et al. Can lifestyle changes reverse coronary heart disease?: The Lifestyle Heart Trial. 1990;336(8708):129–33.
83. Lau C, Yu R, Woo J JPO. Effects of a 12-week hatha yoga intervention on metabolic risk and quality of life in Hong Kong Chinese adults with and without metabolic syndrome. 2015;10(6):e0130731.
84. Siu PM, Angus PY, Benzie IF, Woo J JD, syndrome m. Effects of 1-year yoga on cardiovascular risk factors in middle-aged and older adults with metabolic syndrome: a randomized trial. 2015;7(1):40.
85. Wolff M, Sundquist K, Lönn SL, Midlöv P JBcd. Impact of yoga on blood pressure and quality of life in patients with hypertension–a controlled trial in primary care, matched for systolic blood pressure. 2013;13(1):111.
86. Yang K, Bernardo LM, Sereika SM, Conroy MB, Balk J, Burke LE JE-BC, et al. Utilization of 3-month yoga program for adults at high risk for type 2 diabetes: a pilot study. 2011;2011.
Článok vyšiel v časopise
PLOS One
2019 Číslo 10
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs